--- library_name: keras license: apache-2.0 tags: - keras - stable-diffusion - text-to-image - keras-dreambooth - nature --- ## Model description This is a Keras Dreambooth model fine-tuned to images of galaxy mergers taken with the [Hubble Space Telescope](https://en.wikipedia.org/wiki/Hubble_Space_Telescope). In particular, I selected mergers at intermediate stages (3-4 [here](https://sci.esa.int/web/hubble/-/42637-merger-stages-of-interacting-galaxies)), where the two bodies of the merging galaxies are still recognizeable and/or a bridge of material connecting the two galaxies is clearly visible. Credit for the training images goes to ESA/Hubble: images can be found on their [website](https://esahubble.org/images/) selecting the category of [interacting galaxies](https://esahubble.org/images/archive/search/?category=560&adv=&facility=2). ### Sample Outputs A few ouput samples of the Dreambooth model below. **prompt**: `image of sks galaxies merging in space` ![](output-samples-mergers/db-mergers_collage.jpg) **prompt**: `painting of sks galaxies merging in van gogh style, 8k, high quality, trending on artstation` ![](output-samples-mergers/db-mergers-vangogh_collage.jpg) #### *Cosmic Hugs*: an artistic rendition of galaxy collisions ![](output-samples-mergers/cosmichugs.png) ## Intended uses & limitations This model has similar intended uses & limitations as any Stable Diffusion and Dreambooth models (see e.g. [this model](https://huggingface.co/stabilityai/stable-diffusion-2-1)). In particular, this model should be used with a prompt containing `sks galaxies merging`. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | inner_optimizer.class_name | Custom>RMSprop | | inner_optimizer.config.name | RMSprop | | inner_optimizer.config.weight_decay | None | | inner_optimizer.config.clipnorm | None | | inner_optimizer.config.global_clipnorm | None | | inner_optimizer.config.clipvalue | None | | inner_optimizer.config.use_ema | False | | inner_optimizer.config.ema_momentum | 0.99 | | inner_optimizer.config.ema_overwrite_frequency | 100 | | inner_optimizer.config.jit_compile | True | | inner_optimizer.config.is_legacy_optimizer | False | | inner_optimizer.config.learning_rate | 0.0010000000474974513 | | inner_optimizer.config.rho | 0.9 | | inner_optimizer.config.momentum | 0.0 | | inner_optimizer.config.epsilon | 1e-07 | | inner_optimizer.config.centered | False | | dynamic | True | | initial_scale | 32768.0 | | dynamic_growth_steps | 2000 | | training_precision | mixed_float16 |