Upload tfdecisiontrees_final.py
Browse files- tfdecisiontrees_final.py +274 -0
tfdecisiontrees_final.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""TFDecisionTrees_Final.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1QCdVlNQ8LszC_v3ek10DUeO9V0IvVzpm
|
8 |
+
|
9 |
+
# Classification with TF Decision Trees
|
10 |
+
Source code from https://keras.io/examples/structured_data/classification_with_tfdf/
|
11 |
+
"""
|
12 |
+
|
13 |
+
!pip install huggingface_hub
|
14 |
+
|
15 |
+
!pip install numpy==1.20
|
16 |
+
|
17 |
+
!pip install folium==0.2.1
|
18 |
+
|
19 |
+
!pip install imgaug==0.2.6
|
20 |
+
|
21 |
+
!pip install tensorflow==2.8.0
|
22 |
+
|
23 |
+
!pip install -U tensorflow_decision_forests
|
24 |
+
|
25 |
+
!pip install ipykernel==4.10
|
26 |
+
|
27 |
+
!apt-get install -y git-lfs
|
28 |
+
|
29 |
+
!pip install wurlitzer
|
30 |
+
|
31 |
+
from huggingface_hub import notebook_login
|
32 |
+
from huggingface_hub.keras_mixin import push_to_hub_keras
|
33 |
+
|
34 |
+
notebook_login()
|
35 |
+
|
36 |
+
import math
|
37 |
+
import urllib
|
38 |
+
import numpy as np
|
39 |
+
import pandas as pd
|
40 |
+
import tensorflow as tf
|
41 |
+
from tensorflow import keras
|
42 |
+
from tensorflow.keras import layers
|
43 |
+
import tensorflow_decision_forests as tfdf
|
44 |
+
import os
|
45 |
+
import tempfile
|
46 |
+
|
47 |
+
tmpdir = tempfile.mkdtemp()
|
48 |
+
|
49 |
+
try:
|
50 |
+
from wurlitzer import sys_pipes
|
51 |
+
except:
|
52 |
+
from colabtools.googlelog import CaptureLog as sys_pipes
|
53 |
+
|
54 |
+
input_path = "https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income"
|
55 |
+
input_column_header = "income_level"
|
56 |
+
|
57 |
+
#Load data
|
58 |
+
|
59 |
+
BASE_PATH = input_path
|
60 |
+
CSV_HEADER = [ l.decode("utf-8").split(":")[0].replace(" ", "_")
|
61 |
+
for l in urllib.request.urlopen(f"{BASE_PATH}.names")
|
62 |
+
if not l.startswith(b"|")][2:]
|
63 |
+
|
64 |
+
CSV_HEADER.append(input_column_header)
|
65 |
+
|
66 |
+
train_data = pd.read_csv(f"{BASE_PATH}.data.gz", header=None, names=CSV_HEADER)
|
67 |
+
test_data = pd.read_csv(f"{BASE_PATH}.test.gz", header=None, names=CSV_HEADER)
|
68 |
+
|
69 |
+
train_data["migration_code-change_in_msa"] = train_data["migration_code-change_in_msa"].apply(lambda x: "Unansw" if x == " ?" else x)
|
70 |
+
|
71 |
+
test_data["migration_code-change_in_msa"] = test_data["migration_code-change_in_msa"].apply(lambda x: "Unansw" if x == " ?" else x)
|
72 |
+
|
73 |
+
print(train_data["migration_code-change_in_msa"].unique())
|
74 |
+
|
75 |
+
for i, value in enumerate(CSV_HEADER):
|
76 |
+
if value == "fill_inc_questionnaire_for_veteran's_admin":
|
77 |
+
CSV_HEADER[i] = "fill_inc_veterans_admin"
|
78 |
+
elif value == "migration_code-change_in_msa":
|
79 |
+
CSV_HEADER[i] = "migration_code_chx_in_msa"
|
80 |
+
elif value == "migration_code-change_in_reg":
|
81 |
+
CSV_HEADER[i] = "migration_code_chx_in_reg"
|
82 |
+
elif value == "migration_code-move_within_reg":
|
83 |
+
CSV_HEADER[i] = "migration_code_move_within_reg"
|
84 |
+
|
85 |
+
#inspect the classes of the label, the input_column_header in this case
|
86 |
+
classes = train_data["income_level"].unique().tolist()
|
87 |
+
print(f"Label classes: {classes}")
|
88 |
+
|
89 |
+
#rename columns containing invalid characters
|
90 |
+
train_data = train_data.rename(columns={"fill_inc_questionnaire_for_veteran's_admin": "fill_inc_veterans_admin", "migration_code-change_in_msa": "migration_code_chx_in_msa", "migration_code-change_in_reg" : "migration_code_chx_in_reg", "migration_code-move_within_reg" : "migration_code_move_within_reg"})
|
91 |
+
test_data = train_data.rename(columns={"fill_inc_questionnaire_for_veteran's_admin": "fill_inc_veterans_admin", "migration_code-change_in_msa": "migration_code_chx_in_msa", "migration_code-change_in_reg" : "migration_code_chx_in_reg", "migration_code-move_within_reg" : "migration_code_move_within_reg"})
|
92 |
+
|
93 |
+
#convert from string to integers
|
94 |
+
# This stage is necessary if your classification label is represented as a
|
95 |
+
# string. Note: Keras expected classification labels to be integers.
|
96 |
+
target_labels = [" - 50000.", " 50000+."]
|
97 |
+
train_data[input_column_header] = train_data[input_column_header].map(target_labels.index)
|
98 |
+
test_data[input_column_header] = test_data[input_column_header].map(target_labels.index)
|
99 |
+
|
100 |
+
#Observe shape of training and test data
|
101 |
+
print(f"Train data shape: {train_data.shape}")
|
102 |
+
print(f"Test data shape: {test_data.shape}")
|
103 |
+
print(train_data.head().T)
|
104 |
+
|
105 |
+
#define metadata
|
106 |
+
|
107 |
+
# Target column name.
|
108 |
+
TARGET_COLUMN_NAME = "income_level"
|
109 |
+
# Weight column name.
|
110 |
+
WEIGHT_COLUMN_NAME = "instance_weight"
|
111 |
+
# Numeric feature names.
|
112 |
+
NUMERIC_FEATURE_NAMES = [
|
113 |
+
"age",
|
114 |
+
"wage_per_hour",
|
115 |
+
"capital_gains",
|
116 |
+
"capital_losses",
|
117 |
+
"dividends_from_stocks",
|
118 |
+
"num_persons_worked_for_employer",
|
119 |
+
"weeks_worked_in_year",
|
120 |
+
]
|
121 |
+
|
122 |
+
# Categorical features and their vocabulary lists.
|
123 |
+
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
|
124 |
+
feature_name: sorted(
|
125 |
+
[str(value) for value in list(train_data[feature_name].unique())]
|
126 |
+
)
|
127 |
+
for feature_name in CSV_HEADER
|
128 |
+
if feature_name
|
129 |
+
not in list(NUMERIC_FEATURE_NAMES + [WEIGHT_COLUMN_NAME, TARGET_COLUMN_NAME])
|
130 |
+
}
|
131 |
+
# All features names.
|
132 |
+
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + list(
|
133 |
+
CATEGORICAL_FEATURES_WITH_VOCABULARY.keys()
|
134 |
+
)
|
135 |
+
|
136 |
+
"""Configure hyperparameters for the tree model."""
|
137 |
+
|
138 |
+
GROWING_STRATEGY = "BEST_FIRST_GLOBAL"
|
139 |
+
NUM_TREES = 250
|
140 |
+
MIN_EXAMPLES = 6
|
141 |
+
MAX_DEPTH = 5
|
142 |
+
SUBSAMPLE = 0.65
|
143 |
+
SAMPLING_METHOD = "RANDOM"
|
144 |
+
VALIDATION_RATIO = 0.1
|
145 |
+
|
146 |
+
#Implement training & evaluation procedure
|
147 |
+
def prepare_sample(features, target, weight):
|
148 |
+
for feature_name in features:
|
149 |
+
if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
|
150 |
+
if features[feature_name].dtype != tf.dtypes.string:
|
151 |
+
# Convert categorical feature values to string.
|
152 |
+
features[feature_name] = tf.strings.as_string(features[feature_name])
|
153 |
+
return features, target, weight
|
154 |
+
|
155 |
+
|
156 |
+
def run_experiment(model, train_data, test_data, num_epochs=1, batch_size=None):
|
157 |
+
|
158 |
+
train_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(
|
159 |
+
train_data, label="income_level", weight="instance_weight"
|
160 |
+
).map(prepare_sample, num_parallel_calls=tf.data.AUTOTUNE)
|
161 |
+
test_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(
|
162 |
+
test_data, label="income_level", weight="instance_weight"
|
163 |
+
).map(prepare_sample, num_parallel_calls=tf.data.AUTOTUNE)
|
164 |
+
|
165 |
+
model.fit(train_dataset, epochs=num_epochs, batch_size=batch_size)
|
166 |
+
_, accuracy = model.evaluate(test_dataset, verbose=0)
|
167 |
+
push_to_hub = True
|
168 |
+
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
|
169 |
+
|
170 |
+
#Create model inputs
|
171 |
+
|
172 |
+
def create_model_inputs():
|
173 |
+
inputs = {}
|
174 |
+
for feature_name in FEATURE_NAMES:
|
175 |
+
if feature_name in NUMERIC_FEATURE_NAMES:
|
176 |
+
inputs[feature_name] = layers.Input(
|
177 |
+
name=feature_name, shape=(), dtype=tf.float32
|
178 |
+
)
|
179 |
+
else:
|
180 |
+
inputs[feature_name] = layers.Input(
|
181 |
+
name=feature_name, shape=(), dtype=tf.string
|
182 |
+
)
|
183 |
+
return inputs
|
184 |
+
|
185 |
+
"""# Experiment 1: Decision Forests with raw features"""
|
186 |
+
|
187 |
+
#Decision Forest with raw features
|
188 |
+
def specify_feature_usages(inputs):
|
189 |
+
feature_usages = []
|
190 |
+
|
191 |
+
for feature_name in inputs:
|
192 |
+
if inputs[feature_name].dtype == tf.dtypes.float32:
|
193 |
+
feature_usage = tfdf.keras.FeatureUsage(
|
194 |
+
name=feature_name, semantic=tfdf.keras.FeatureSemantic.NUMERICAL
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
feature_usage = tfdf.keras.FeatureUsage(
|
198 |
+
name=feature_name, semantic=tfdf.keras.FeatureSemantic.CATEGORICAL
|
199 |
+
)
|
200 |
+
|
201 |
+
feature_usages.append(feature_usage)
|
202 |
+
return feature_usages
|
203 |
+
|
204 |
+
#Create GB trees model
|
205 |
+
def create_gbt_model():
|
206 |
+
gbt_model = tfdf.keras.GradientBoostedTreesModel(
|
207 |
+
features = specify_feature_usages(create_model_inputs()),
|
208 |
+
exclude_non_specified_features = True,
|
209 |
+
growing_strategy = GROWING_STRATEGY,
|
210 |
+
num_trees = NUM_TREES,
|
211 |
+
max_depth = MAX_DEPTH,
|
212 |
+
min_examples = MIN_EXAMPLES,
|
213 |
+
subsample = SUBSAMPLE,
|
214 |
+
validation_ratio = VALIDATION_RATIO,
|
215 |
+
task = tfdf.keras.Task.CLASSIFICATION,
|
216 |
+
loss = "DEFAULT",
|
217 |
+
)
|
218 |
+
|
219 |
+
gbt_model.compile(metrics=[keras.metrics.BinaryAccuracy(name="accuracy")])
|
220 |
+
return gbt_model
|
221 |
+
|
222 |
+
#Train and evaluate model
|
223 |
+
gbt_model = create_gbt_model()
|
224 |
+
run_experiment(gbt_model, train_data, test_data)
|
225 |
+
|
226 |
+
#Inspect the model: Model type, mask, input features, feature importance
|
227 |
+
print(gbt_model.summary())
|
228 |
+
|
229 |
+
inspector = gbt_model.make_inspector()
|
230 |
+
[field for field in dir(inspector) if not field.startswith("_")]
|
231 |
+
|
232 |
+
#plot the model
|
233 |
+
tfdf.model_plotter.plot_model_in_colab(gbt_model, tree_idx=0, max_depth=3)
|
234 |
+
|
235 |
+
#display variable importance
|
236 |
+
inspector.variable_importances()
|
237 |
+
|
238 |
+
print("Model type:", inspector.model_type())
|
239 |
+
print("Number of trees:", inspector.num_trees())
|
240 |
+
print("Objective:", inspector.objective())
|
241 |
+
print("Input features:", inspector.features())
|
242 |
+
|
243 |
+
inspector.features()
|
244 |
+
|
245 |
+
#save_path = os.path.join(tmpdir, "raw/1/")
|
246 |
+
gbt_model.save("/Users/tdubon/TF_Model")
|
247 |
+
|
248 |
+
"""# Creating HF Space"""
|
249 |
+
|
250 |
+
from huggingface_hub import KerasModelHubMixin
|
251 |
+
from huggingface_hub.keras_mixin import push_to_hub_keras
|
252 |
+
push_to_hub_keras(gbt_model, repo_url="https://huggingface.co/keras-io/TF_Decision_Trees")
|
253 |
+
|
254 |
+
#Clone and configure
|
255 |
+
!git clone https://tdubon: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@huggingface.co/tdubon/TF_Decision_Trees
|
256 |
+
|
257 |
+
!cd TFClassificationForest
|
258 |
+
!git config --global user.email "tdubon6@gmail.com"
|
259 |
+
# Tip: using the same email than for your huggingface.co account will link your commits to your profile
|
260 |
+
!git config --global user.name "tdubon"
|
261 |
+
|
262 |
+
!git add .
|
263 |
+
!git commit -m "Initial commit"
|
264 |
+
!git push
|
265 |
+
|
266 |
+
tf.keras.models.save_model(
|
267 |
+
gbt_model, "/Users/tdubon/TFClassificationForest", overwrite=True, include_optimizer=True, save_format=None,
|
268 |
+
signatures=None, options=None, save_traces=True)
|
269 |
+
|
270 |
+
# Commented out IPython magic to ensure Python compatibility.
|
271 |
+
gbt_model.make_inspector().export_to_tensorboard("/tmp/tb_logs/model_1")
|
272 |
+
|
273 |
+
# %load_ext tensorboard
|
274 |
+
# %tensorboard --logdir "/tmp/tb_logs"
|