metadata
library_name: keras
tags:
- structured-data-classification
- time-series
- anomaly-detection
Model description
Timeseries anomaly detection using an Autoencoder
This repo contains the model and the notebook to this Keras example on Timeseries anomaly detection using an Autoencoder.
Full credits to: Pavithra Vijay
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training Metrics
Epochs | Train Loss | Validation Loss |
---|---|---|
1 | 0.011 | 0.014 |
2 | 0.011 | 0.015 |
3 | 0.01 | 0.012 |
4 | 0.01 | 0.013 |
5 | 0.01 | 0.012 |
6 | 0.009 | 0.014 |
7 | 0.009 | 0.013 |
8 | 0.009 | 0.012 |
9 | 0.009 | 0.012 |
10 | 0.009 | 0.011 |
11 | 0.008 | 0.01 |
12 | 0.008 | 0.011 |
13 | 0.008 | 0.009 |
14 | 0.008 | 0.011 |
15 | 0.008 | 0.009 |
16 | 0.008 | 0.009 |
17 | 0.008 | 0.009 |
18 | 0.007 | 0.01 |
19 | 0.007 | 0.009 |
20 | 0.007 | 0.008 |
21 | 0.007 | 0.009 |
22 | 0.007 | 0.008 |
23 | 0.007 | 0.008 |
24 | 0.007 | 0.007 |
25 | 0.007 | 0.008 |
26 | 0.006 | 0.009 |
27 | 0.006 | 0.008 |
28 | 0.006 | 0.009 |
29 | 0.006 | 0.008 |