library_name: tf-keras | |
tags: | |
- tabular-regression | |
- time-series | |
- anomaly-detection | |
## Timeseries anomaly detection using an Autoencoder | |
This repo contains the model and the notebook to this [Keras example on Timeseries anomaly detection using an Autoencoder.](https://keras.io/examples/timeseries/timeseries_anomaly_detection/) | |
Full credits to: [Pavithra Vijay](https://github.com/pavithrasv) | |
## Background and Datasets | |
This script demonstrates how you can use a reconstruction convolutional autoencoder model to detect anomalies in timeseries data. We will use the [Numenta Anomaly Benchmark(NAB)](https://www.kaggle.com/datasets/boltzmannbrain/nab) dataset. It provides artifical timeseries data containing labeled anomalous periods of behavior. Data are ordered, timestamped, single-valued metrics. | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} | |
- training_precision: float32 | |
## Training Metrics | |
| Epochs | Train Loss | Validation Loss | | |
|--- |--- |--- | | |
| 1| 0.011| 0.014| | |
| 2| 0.011| 0.015| | |
| 3| 0.01| 0.012| | |
| 4| 0.01| 0.013| | |
| 5| 0.01| 0.012| | |
| 6| 0.009| 0.014| | |
| 7| 0.009| 0.013| | |
| 8| 0.009| 0.012| | |
| 9| 0.009| 0.012| | |
| 10| 0.009| 0.011| | |
| 11| 0.008| 0.01| | |
| 12| 0.008| 0.011| | |
| 13| 0.008| 0.009| | |
| 14| 0.008| 0.011| | |
| 15| 0.008| 0.009| | |
| 16| 0.008| 0.009| | |
| 17| 0.008| 0.009| | |
| 18| 0.007| 0.01| | |
| 19| 0.007| 0.009| | |
| 20| 0.007| 0.008| | |
| 21| 0.007| 0.009| | |
| 22| 0.007| 0.008| | |
| 23| 0.007| 0.008| | |
| 24| 0.007| 0.007| | |
| 25| 0.007| 0.008| | |
| 26| 0.006| 0.009| | |
| 27| 0.006| 0.008| | |
| 28| 0.006| 0.009| | |
| 29| 0.006| 0.008| | |
## Model Plot | |
<details> | |
<summary>View Model Plot</summary> | |
![Model Image](./model.png) | |
</details> |