File size: 2,048 Bytes
4cb67ab 7e96bd1 bea2271 4cb67ab bea2271 7e96bd1 bea2271 4cb67ab bea2271 4cb67ab 90b15b8 4cb67ab 8a23bbc 4cb67ab 7d195b4 4cb67ab 32bd125 4cb67ab 32bd125 4cb67ab 6d6f02e 4cb67ab 6d6f02e 32bd125 4cb67ab a64f9b3 4cb67ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
datasets:
- squad
metrics:
- f1
widget:
- context: 'Keras is an API designed for human beings, not machines. Keras follows
best practices for reducing cognitive load: it offers consistent & simple APIs,
it minimizes the number of user actions required for common use cases, and it
provides clear and actionable feedback upon user error.'
base_model: distilbert-base-cased
model-index:
- name: transformers-qa
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Question Answering with Hugging Face Transformers and Keras 🤗❤️
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on SQuAD dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.9300
- Validation Loss: 1.1437
- Epoch: 1
## Model description
Question answering model based on distilbert-base-cased, trained with 🤗Transformers + ❤️Keras.
## Intended uses & limitations
This model is trained for Question Answering tutorial for Keras.io.
## Training and evaluation data
It is trained on [SQuAD](https://huggingface.co/datasets/squad) question answering dataset. ⁉️
## Training procedure
Find the notebook in Keras Examples [here](https://keras.io/examples/nlp/question_answering/). ❤️
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.5145 | 1.1500 | 0 |
| 0.9300 | 1.1437 | 1 |
### Framework versions
- Transformers 4.16.0.dev0
- TensorFlow 2.6.0
- Datasets 1.16.2.dev0
- Tokenizers 0.10.3
|