--- library_name: keras-hub tags: - image-segmentation - keras --- ## Model Overview A Keras model implementing the MixTransformer architecture to be used as a backbone for the SegFormer architecture. This model is supported in both KerasCV and KerasHub. KerasCV will no longer be actively developed, so please try to use KerasHub. References: - [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) # noqa: E501 - [Based on the TensorFlow implementation from DeepVision](https://github.com/DavidLandup0/deepvision/tree/main/deepvision/models/classification/mix_transformer) # noqa: E501 ## Links * [MiT Quickstart Notebook: coming soon]() * [MiT API Documentation: coming soon]() ## Installation Keras and KerasHub can be installed with: ``` pip install -U -q keras-Hub pip install -U -q keras>=3 ``` Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. ## Presets The following model checkpoints are provided by the Keras team. Weights have been ported from https://dl.fbaipublicfiles.com/segment_anything/. Full code examples for each are available below. Here's the table formatted similarly to the given pattern: Here's the updated table with the input resolutions included in the descriptions: | Preset name | Parameters | Description | |--------------------------|------------|--------------------------------------------------------------------------------------------------| | mit_b0_ade20k_512 | 3.32M | MiT (MixTransformer) model with 8 transformer blocks, trained on the ADE20K dataset with an input resolution of 512x512 pixels. | | mit_b1_ade20k_512 | 13.16M | MiT (MixTransformer) model with 8 transformer blocks, trained on the ADE20K dataset with an input resolution of 512x512 pixels. | | mit_b2_ade20k_512 | 24.20M | MiT (MixTransformer) model with 16 transformer blocks, trained on the ADE20K dataset with an input resolution of 512x512 pixels. | | mit_b3_ade20k_512 | 44.08M | MiT (MixTransformer) model with 28 transformer blocks, trained on the ADE20K dataset with an input resolution of 512x512 pixels. | | mit_b4_ade20k_512 | 60.85M | MiT (MixTransformer) model with 41 transformer blocks, trained on the ADE20K dataset with an input resolution of 512x512 pixels. | | mit_b5_ade20k_640 | 81.45M | MiT (MixTransformer) model with 52 transformer blocks, trained on the ADE20K dataset with an input resolution of 640x640 pixels. | | mit_b0_cityscapes_1024 | 3.32M | MiT (MixTransformer) model with 8 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. | | mit_b1_cityscapes_1024 | 13.16M | MiT (MixTransformer) model with 8 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. | | mit_b2_cityscapes_1024 | 24.20M | MiT (MixTransformer) model with 16 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. | | mit_b3_cityscapes_1024 | 44.08M | MiT (MixTransformer) model with 28 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. | | mit_b4_cityscapes_1024 | 60.85M | MiT (MixTransformer) model with 41 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. | | mit_b5_cityscapes_1024 | 81.45M | MiT (MixTransformer) model with 52 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. | ## Example Usage Using the class with a `backbone`: ``` import tensorflow as tf import keras_cv import numpy as np images = np.ones(shape=(1, 96, 96, 3)) labels = np.zeros(shape=(1, 96, 96, 1)) backbone = keras_cv.models.MiTBackbone.from_preset("mit_b2_cityscapes_1024") # Evaluate model model(images) # Train model model.compile( optimizer="adam", loss=keras.losses.BinaryCrossentropy(from_logits=False), metrics=["accuracy"], ) model.fit(images, labels, epochs=3) ``` ## Example Usage with Hugging Face URI Using the class with a `backbone`: ``` import tensorflow as tf import keras_cv import numpy as np images = np.ones(shape=(1, 96, 96, 3)) labels = np.zeros(shape=(1, 96, 96, 1)) backbone = keras_cv.models.MiTBackbone.from_preset("hf://keras/mit_b2_cityscapes_1024") # Evaluate model model(images) # Train model model.compile( optimizer="adam", loss=keras.losses.BinaryCrossentropy(from_logits=False), metrics=["accuracy"], ) model.fit(images, labels, epochs=3) ```