File size: 2,065 Bytes
c5424b8 d5c7367 c5424b8 d5c7367 c5424b8 d5c7367 c5424b8 d5c7367 c5424b8 9c6a21a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
tags:
- ultralyticsplus
- yolov8
- ultralytics
- yolo
- vision
- image-segmentation
- pytorch
- awesome-yolov8-models
library_name: ultralytics
library_version: 8.0.23
inference: false
datasets:
- keremberke/pcb-defect-segmentation
model-index:
- name: keremberke/yolov8m-pcb-defect-segmentation
results:
- task:
type: image-segmentation
dataset:
type: keremberke/pcb-defect-segmentation
name: pcb-defect-segmentation
split: validation
metrics:
- type: precision # since mAP@0.5 is not available on hf.co/metrics
value: 0.56836 # min: 0.0 - max: 1.0
name: mAP@0.5(box)
- type: precision # since mAP@0.5 is not available on hf.co/metrics
value: 0.5573 # min: 0.0 - max: 1.0
name: mAP@0.5(mask)
---
<div align="center">
<img width="640" alt="keremberke/yolov8m-pcb-defect-segmentation" src="https://huggingface.co/keremberke/yolov8m-pcb-defect-segmentation/resolve/main/thumbnail.jpg">
</div>
### Supported Labels
```
['Dry_joint', 'Incorrect_installation', 'PCB_damage', 'Short_circuit']
```
### How to use
- Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):
```bash
pip install ultralyticsplus==0.0.24 ultralytics==8.0.23
```
- Load model and perform prediction:
```python
from ultralyticsplus import YOLO, render_result
# load model
model = YOLO('keremberke/yolov8m-pcb-defect-segmentation')
# set model parameters
model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model.predict(image)
# observe results
print(results[0].boxes)
print(results[0].masks)
render = render_result(model=model, image=image, result=results[0])
render.show()
```
**More models available at: [awesome-yolov8-models](https://yolov8.xyz)** |