File size: 2,540 Bytes
9d2f0d6 d96e812 9d2f0d6 d96e812 9d2f0d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
tags:
- ultralyticsplus
- yolov8
- ultralytics
- yolo
- vision
- image-classification
- pytorch
- awesome-yolov8-models
library_name: ultralytics
library_version: 8.0.20
inference: false
datasets:
- keremberke/indoor-scene-classification
model-index:
- name: keremberke/yolov8n-scene-classification
results:
- task:
type: image-classification
dataset:
type: keremberke/indoor-scene-classification
name: indoor-scene-classification
split: validation
metrics:
- type: accuracy
value: 0.01605 # min: 0.0 - max: 1.0
name: top1 accuracy
- type: accuracy
value: 0.08793 # min: 0.0 - max: 1.0
name: top5 accuracy
---
<div align="center">
<img width="640" alt="keremberke/yolov8n-scene-classification" src="https://huggingface.co/keremberke/yolov8n-scene-classification/resolve/main/thumbnail.jpg">
</div>
### Supported Labels
```
['airport_inside', 'artstudio', 'auditorium', 'bakery', 'bookstore', 'bowling', 'buffet', 'casino', 'children_room', 'church_inside', 'classroom', 'cloister', 'closet', 'clothingstore', 'computerroom', 'concert_hall', 'corridor', 'deli', 'dentaloffice', 'dining_room', 'elevator', 'fastfood_restaurant', 'florist', 'gameroom', 'garage', 'greenhouse', 'grocerystore', 'gym', 'hairsalon', 'hospitalroom', 'inside_bus', 'inside_subway', 'jewelleryshop', 'kindergarden', 'kitchen', 'laboratorywet', 'laundromat', 'library', 'livingroom', 'lobby', 'locker_room', 'mall', 'meeting_room', 'movietheater', 'museum', 'nursery', 'office', 'operating_room', 'pantry', 'poolinside', 'prisoncell', 'restaurant', 'restaurant_kitchen', 'shoeshop', 'stairscase', 'studiomusic', 'subway', 'toystore', 'trainstation', 'tv_studio', 'videostore', 'waitingroom', 'warehouse', 'winecellar']
```
### How to use
- Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):
```bash
pip install ultralyticsplus==0.0.21
```
- Load model and perform prediction:
```python
from ultralyticsplus import YOLO, postprocess_classify_output
# load model
model = YOLO('keremberke/yolov8n-scene-classification')
# set model parameters
model.overrides['conf'] = 0.25 # model confidence threshold
# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model.predict(image)
# observe results
print(results[0].probs) # [0.1, 0.2, 0.3, 0.4]
processed_result = postprocess_classify_output(model, result=results[0])
print(processed_result) # {"cat": 0.4, "dog": 0.6}
```
|