File size: 20,447 Bytes
2720487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from torch import nn
import torch
from typing import Optional, Tuple, Union

from transformers.models.donut.modeling_donut_swin import DonutSwinPatchEmbeddings, DonutSwinEmbeddings, DonutSwinModel, \
    DonutSwinEncoder, DonutSwinModelOutput, DonutSwinEncoderOutput, DonutSwinAttention, DonutSwinDropPath, \
    DonutSwinIntermediate, DonutSwinOutput, window_partition, window_reverse

# from config import VariableDonutSwinConfig

from .config import VariableDonutSwinConfig


class VariableDonutSwinEmbeddings(DonutSwinEmbeddings):
    """
    Construct the patch and position embeddings. Optionally, also the mask token.
    """

    def __init__(self, config, use_mask_token=False):
        super().__init__(config, use_mask_token)

        self.patch_embeddings = DonutSwinPatchEmbeddings(config)
        num_patches = self.patch_embeddings.num_patches
        self.patch_grid = self.patch_embeddings.grid_size
        self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
        self.position_embeddings = None

        if config.use_absolute_embeddings:
            self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim))

        self.norm = nn.LayerNorm(config.embed_dim)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(
        self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None
    ) -> Tuple[torch.Tensor]:

        embeddings, output_dimensions = self.patch_embeddings(pixel_values)
        # Layernorm across the last dimension (each patch is a single row)
        embeddings = self.norm(embeddings)
        batch_size, seq_len, embed_dim = embeddings.size()

        if bool_masked_pos is not None:
            mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
            # replace the masked visual tokens by mask_tokens
            mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
            embeddings = embeddings * (1.0 - mask) + mask_tokens * mask

        if self.position_embeddings is not None:
            embeddings = embeddings + self.position_embeddings[:, :seq_len, :]

        embeddings = self.dropout(embeddings)

        return embeddings, output_dimensions


class VariableDonutSwinPatchMerging(nn.Module):
    """
    Patch Merging Layer.

    Args:
        input_resolution (`Tuple[int]`):
            Resolution of input feature.
        dim (`int`):
            Number of input channels.
        norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
            Normalization layer class.
    """

    def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def maybe_pad(self, input_feature, height, width):
        should_pad = (height % 2 == 1) or (width % 2 == 1)
        if should_pad:
            pad_values = (0, 0, 0, width % 2, 0, height % 2)
            input_feature = nn.functional.pad(input_feature, pad_values)

        return input_feature

    def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
        height, width = input_dimensions
        # `dim` is height * width
        batch_size, dim, num_channels = input_feature.shape

        input_feature = input_feature.view(batch_size, height, width, num_channels)
        # pad input to be disible by width and height, if needed
        input_feature = self.maybe_pad(input_feature, height, width)
        # [batch_size, height/2, width/2, num_channels]
        input_feature_0 = input_feature[:, 0::2, 0::2, :]
        # [batch_size, height/2, width/2, num_channels]
        input_feature_1 = input_feature[:, 1::2, 0::2, :]
        # [batch_size, height/2, width/2, num_channels]
        input_feature_2 = input_feature[:, 0::2, 1::2, :]
        # [batch_size, height/2, width/2, num_channels]
        input_feature_3 = input_feature[:, 1::2, 1::2, :]
        # batch_size height/2 width/2 4*num_channels
        input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
        input_feature = input_feature.view(batch_size, -1, 4 * num_channels)  # batch_size height/2*width/2 4*C

        input_feature = self.norm(input_feature)
        input_feature = self.reduction(input_feature)

        return input_feature


class VariableDonutSwinLayer(nn.Module):
    def __init__(self, config, dim, input_resolution, num_heads, shift_size=0):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.shift_size = shift_size
        self.window_size = config.window_size
        self.input_resolution = input_resolution
        self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
        self.attention = DonutSwinAttention(config, dim, num_heads, window_size=self.window_size)
        self.drop_path = DonutSwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
        self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
        self.intermediate = DonutSwinIntermediate(config, dim)
        self.output = DonutSwinOutput(config, dim)

    def set_shift_and_window_size(self, input_resolution):
        if min(input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(input_resolution)

    def get_attn_mask(self, height, width, dtype):
        if self.shift_size > 0:
            # calculate attention mask for SW-MSA
            img_mask = torch.zeros((1, height, width, 1), dtype=dtype)
            height_slices = (
                slice(0, -self.window_size),
                slice(-self.window_size, -self.shift_size),
                slice(-self.shift_size, None),
            )
            width_slices = (
                slice(0, -self.window_size),
                slice(-self.window_size, -self.shift_size),
                slice(-self.shift_size, None),
            )
            count = 0
            for height_slice in height_slices:
                for width_slice in width_slices:
                    img_mask[:, height_slice, width_slice, :] = count
                    count += 1

            mask_windows = window_partition(img_mask, self.window_size)
            mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        else:
            attn_mask = None
        return attn_mask

    def maybe_pad(self, hidden_states, height, width):
        pad_right = (self.window_size - width % self.window_size) % self.window_size
        pad_bottom = (self.window_size - height % self.window_size) % self.window_size
        pad_values = (0, 0, 0, pad_right, 0, pad_bottom)
        hidden_states = nn.functional.pad(hidden_states, pad_values)
        return hidden_states, pad_values

    def forward(
        self,
        hidden_states: torch.Tensor,
        input_dimensions: Tuple[int, int],
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
        always_partition: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if not always_partition:
            self.set_shift_and_window_size(input_dimensions)
        else:
            pass
        height, width = input_dimensions
        batch_size, _, channels = hidden_states.size()
        shortcut = hidden_states

        hidden_states = self.layernorm_before(hidden_states)

        hidden_states = hidden_states.view(batch_size, height, width, channels)

        # pad hidden_states to multiples of window size
        hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)

        _, height_pad, width_pad, _ = hidden_states.shape
        # cyclic shift
        if self.shift_size > 0:
            shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_hidden_states = hidden_states

        # partition windows
        hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
        hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
        attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype)
        if attn_mask is not None:
            attn_mask = attn_mask.to(hidden_states_windows.device)

        attention_outputs = self.attention(
            hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
        )

        attention_output = attention_outputs[0]

        attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
        shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad)

        # reverse cyclic shift
        if self.shift_size > 0:
            attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            attention_windows = shifted_windows

        was_padded = pad_values[3] > 0 or pad_values[5] > 0
        if was_padded:
            attention_windows = attention_windows[:, :height, :width, :].contiguous()

        attention_windows = attention_windows.view(batch_size, height * width, channels)

        hidden_states = shortcut + self.drop_path(attention_windows)

        layer_output = self.layernorm_after(hidden_states)
        layer_output = self.intermediate(layer_output)
        layer_output = hidden_states + self.output(layer_output)

        layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
        return layer_outputs


class VariableDonutSwinStage(nn.Module):
    def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample):
        super().__init__()
        self.config = config
        self.dim = dim
        self.blocks = nn.ModuleList(
            [
                VariableDonutSwinLayer(
                    config=config,
                    dim=dim,
                    input_resolution=input_resolution,
                    num_heads=num_heads,
                    shift_size=0 if (i % 2 == 0) else int(config.window_size // 2),
                )
                for i in range(depth)
            ]
        )

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
        else:
            self.downsample = None

        self.pointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        input_dimensions: Tuple[int, int],
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
        always_partition: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        height, width = input_dimensions
        for i, layer_module in enumerate(self.blocks):
            layer_head_mask = head_mask[i] if head_mask is not None else None

            layer_outputs = layer_module(
                hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
            )

            hidden_states = layer_outputs[0]

        hidden_states_before_downsampling = hidden_states
        if self.downsample is not None:
            height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
            output_dimensions = (height, width, height_downsampled, width_downsampled)
            hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions)
        else:
            output_dimensions = (height, width, height, width)

        stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)

        if output_attentions:
            stage_outputs += layer_outputs[1:]
        return stage_outputs


class VariableDonutSwinEncoder(nn.Module):
    def __init__(self, config, grid_size):
        super().__init__()
        self.num_layers = len(config.depths)
        self.config = config
        dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
        self.layers = nn.ModuleList(
            [
                VariableDonutSwinStage(
                    config=config,
                    dim=int(config.embed_dim * 2**i_layer),
                    input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
                    depth=config.depths[i_layer],
                    num_heads=config.num_heads[i_layer],
                    drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
                    downsample=VariableDonutSwinPatchMerging if (i_layer < self.num_layers - 1) else None,
                )
                for i_layer in range(self.num_layers)
            ]
        )

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        input_dimensions: Tuple[int, int],
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        output_hidden_states_before_downsampling: Optional[bool] = False,
        always_partition: Optional[bool] = False,
        return_dict: Optional[bool] = True,
    ) -> Union[Tuple, DonutSwinEncoderOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_reshaped_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        if output_hidden_states:
            batch_size, _, hidden_size = hidden_states.shape
            # rearrange b (h w) c -> b c h w
            reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
            reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
            all_hidden_states += (hidden_states,)
            all_reshaped_hidden_states += (reshaped_hidden_state,)

        for i, layer_module in enumerate(self.layers):
            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    input_dimensions,
                    layer_head_mask,
                    output_attentions,
                    always_partition,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
                )

            hidden_states = layer_outputs[0]
            hidden_states_before_downsampling = layer_outputs[1]
            output_dimensions = layer_outputs[2]

            input_dimensions = (output_dimensions[-2], output_dimensions[-1])

            if output_hidden_states and output_hidden_states_before_downsampling:
                batch_size, _, hidden_size = hidden_states_before_downsampling.shape
                # rearrange b (h w) c -> b c h w
                # here we use the original (not downsampled) height and width
                reshaped_hidden_state = hidden_states_before_downsampling.view(
                    batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
                )
                reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
                all_hidden_states += (hidden_states_before_downsampling,)
                all_reshaped_hidden_states += (reshaped_hidden_state,)
            elif output_hidden_states and not output_hidden_states_before_downsampling:
                batch_size, _, hidden_size = hidden_states.shape
                # rearrange b (h w) c -> b c h w
                reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
                reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
                all_hidden_states += (hidden_states,)
                all_reshaped_hidden_states += (reshaped_hidden_state,)

            if output_attentions:
                all_self_attentions += layer_outputs[3:]

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)

        return DonutSwinEncoderOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            reshaped_hidden_states=all_reshaped_hidden_states,
        )


class VariableDonutSwinModel(DonutSwinModel):
    config_class = VariableDonutSwinConfig
    def __init__(self, config, add_pooling_layer=True, use_mask_token=False, **kwargs):
        super().__init__(config)
        self.config = config
        self.num_layers = len(config.depths)
        self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))

        self.embeddings = VariableDonutSwinEmbeddings(config, use_mask_token=use_mask_token)
        self.encoder = VariableDonutSwinEncoder(config, self.embeddings.patch_grid)

        self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        bool_masked_pos: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs
    ) -> Union[Tuple, DonutSwinModelOutput]:
        r"""
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, len(self.config.depths))

        embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)

        encoder_outputs = self.encoder(
            embedding_output,
            input_dimensions,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = encoder_outputs[0]

        pooled_output = None
        if self.pooler is not None:
            pooled_output = self.pooler(sequence_output.transpose(1, 2))
            pooled_output = torch.flatten(pooled_output, 1)

        if not return_dict:
            output = (sequence_output, pooled_output) + encoder_outputs[1:]

            return output

        return DonutSwinModelOutput(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
        )