File size: 21,217 Bytes
2720487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import copy
from typing import Optional, List, Union, Tuple

from transformers import MBartForCausalLM, MBartConfig
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
from transformers.models.mbart.modeling_mbart import MBartPreTrainedModel, MBartDecoder
from .config import MBartMoEConfig
import torch
import math


class MBartLearnedPositionalEmbedding(nn.Embedding):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

    def __init__(self, num_embeddings: int, embedding_dim: int):
        # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2
        # and adjust num_embeddings appropriately. Other models don't have this hack
        self.offset = 2
        super().__init__(num_embeddings + self.offset, embedding_dim)

    def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
        """`input_ids' shape is expected to be [bsz x seqlen]."""

        bsz, seq_len = input_ids.shape[:2]
        positions = torch.arange(
            past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
        ).expand(bsz, -1)

        return super().forward(positions + self.offset)


class MBartExpertMLP(nn.Module):
    def __init__(self, config: MBartConfig, is_lg=False, is_xl=False):
        super().__init__()
        self.ffn_dim = config.d_expert
        if is_lg:
            self.ffn_dim = config.d_expert_lg
        if is_xl:
            self.ffn_dim = config.d_expert_xl
        self.hidden_dim = config.d_model

        self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
        self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
        self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
        self.dropout = nn.Dropout(config.activation_dropout)

        self.act_fn = ACT2FN[config.activation_function]

    def forward(self, hidden_states):
        current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
        current_hidden_states = self.w2(current_hidden_states)
        return current_hidden_states


class MBartExpertLayer(nn.Module):
    # From mixtral, with modifications
    def __init__(self, config):
        super().__init__()
        self.dropout = nn.Dropout(config.activation_dropout)

        self.hidden_dim = config.d_model

        self.lg_lang_codes = sorted(config.lg_langs.values()) if hasattr(config, "lg_langs") else []
        self.xl_lang_codes = sorted(config.xl_langs.values()) if hasattr(config, "xl_langs") else []

        self.lang_codes = sorted(config.langs.values())
        self.num_experts = len(self.lang_codes)

        self.experts = nn.ModuleDict({str(lang): MBartExpertMLP(config, is_lg=(lang in self.lg_lang_codes), is_xl=(lang in self.xl_lang_codes)) for lang in self.lang_codes})

    def forward(self, hidden_states: torch.Tensor, langs: torch.LongTensor) -> torch.Tensor:
        batch_size, sequence_length, hidden_dim = hidden_states.shape

        final_hidden_states = torch.zeros(
            (batch_size, sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
        )

        # Weight experts based on how many languages in the input
        routing_weights = 1 / ((langs > 3).sum(axis=-1))
        # Set weights to 1 if zero experts activated
        routing_weights[torch.isinf(routing_weights)] = 1

        unique_langs = langs.unique(dim=None, sorted=True)
        unique_langs = unique_langs[unique_langs > 3] # Remove start token

        # Loop over all available experts in the model and perform the computation on each expert
        for expert_lang in unique_langs:
            # Check which samples match with this expert
            lang_match = (langs == expert_lang).any(dim=-1)
            idx = torch.nonzero(lang_match, as_tuple=True)[0]

            if idx.shape[0] == 0:
                continue

            expert_layer = self.experts[str(expert_lang.item())]

            current_state = hidden_states[idx]
            current_hidden_states = expert_layer(current_state.view(-1, hidden_dim))
            current_hidden_states = current_hidden_states.view(-1, sequence_length, hidden_dim)

            # Weight by number of languages in the input
            selected_routing_weights = routing_weights[idx].view(-1, 1, 1)
            current_hidden_states *= selected_routing_weights

            final_hidden_states.index_add_(0, idx, current_hidden_states)

        return final_hidden_states


class MBartGQAttention(nn.Module):
    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        num_kv_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
        is_causal: bool = False,
        config: Optional[MBartConfig] = None,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.num_kv_heads = num_kv_heads
        self.num_kv_groups = self.num_heads // self.num_kv_heads

        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        self.config = config
        self.scaling = self.head_dim**-0.5
        self.is_decoder = is_decoder
        self.is_causal = is_causal

        self.k_proj = nn.Linear(embed_dim, self.num_kv_heads * self.head_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, self.num_kv_heads * self.head_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def _shape_key_value(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        is_prefill: Optional[bool] = False,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None

        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        # `past_key_value[0].shape[2] == key_value_states.shape[1]`
        # is checking that the `sequence_length` of the `past_key_value` is the same as
        # the provided `key_value_states` to support prefix tuning
        if is_cross_attention:
            if is_prefill:
                # cross_attentions
                key_states = self._shape_key_value(self.k_proj(key_value_states), -1, bsz)
                value_states = self._shape_key_value(self.v_proj(key_value_states), -1, bsz)
                past_key_value = torch.cat([key_states.unsqueeze(0), value_states.unsqueeze(0)], dim=0)
            else:
                # reuse k,v, cross_attentions
                key_states = past_key_value[0]
                value_states = past_key_value[1]
                past_key_value = None
        # Self-attention
        else:
            if is_prefill:
                # initial prompt
                key_states = self._shape_key_value(self.k_proj(hidden_states), -1, bsz)
                value_states = self._shape_key_value(self.v_proj(hidden_states), -1, bsz)
                past_key_value = torch.cat([key_states[:, :, -tgt_len:].unsqueeze(0), value_states[:, :, -tgt_len:].unsqueeze(0)], dim=0)
            else:
                # reuse k, v, self_attention
                key_states = self._shape_key_value(self.k_proj(hidden_states), -1, bsz)
                value_states = self._shape_key_value(self.v_proj(hidden_states), -1, bsz)
                key_states = torch.cat([past_key_value[0], key_states], dim=2)
                value_states = torch.cat([past_key_value[1], value_states], dim=2)
                past_key_value = torch.cat([key_states[:, :, -tgt_len:].unsqueeze(0), value_states[:, :, -tgt_len:].unsqueeze(0)], dim=0)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)

        # Expand kv heads, then match query shape
        key_states = key_states.repeat_interleave(self.num_kv_groups, dim=1).reshape(*proj_shape)
        value_states = value_states.repeat_interleave(self.num_kv_groups, dim=1).reshape(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if not is_cross_attention:
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        attn_output = torch.bmm(attn_weights, value_states).view(bsz, self.num_heads, tgt_len, self.head_dim).transpose(1,2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned across GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
        attn_output = self.out_proj(attn_output)

        return attn_output, past_key_value


class MBartMoEDecoderLayer(nn.Module):
    def __init__(self, config: MBartConfig, has_moe=False):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = MBartGQAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            num_kv_heads=config.kv_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
            is_causal=True,
            config=config,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.encoder_attn = MBartGQAttention(
            self.embed_dim,
            config.decoder_attention_heads,
            num_kv_heads=config.kv_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
            config=config,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.has_moe = has_moe
        if has_moe:
            self.moe = MBartExpertLayer(config)
        else:
            self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
            self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        langs: Optional[torch.LongTensor] = None,
        self_kv_cache: Optional[torch.Tensor] = None,
        cross_kv_cache: Optional[torch.Tensor] = None,
        is_prefill: Optional[bool] = False,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = True,
    ) -> torch.Tensor:
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Self Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        # add present self-attn cache to positions 1,2 of present_key_value tuple
        hidden_states, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_kv_cache,
            is_prefill=is_prefill,
            attention_mask=attention_mask,
        )
        hidden_states = residual + hidden_states

        # Cross-Attention Block
        if encoder_hidden_states is not None:
            residual = hidden_states
            hidden_states = self.encoder_attn_layer_norm(hidden_states)

            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            hidden_states, cross_attn_present_key_value = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                is_prefill=is_prefill,
                attention_mask=encoder_attention_mask,
                past_key_value=cross_kv_cache,
            )
            hidden_states = residual + hidden_states

            # add cross-attn to positions 3,4 of present_key_value tuple
            present_key_value = (present_key_value, cross_attn_present_key_value)

        # Fully Connected
        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        if self.has_moe:
            hidden_states = self.moe(hidden_states, langs)
        else:
            hidden_states = self.activation_fn(self.fc1(hidden_states))
            hidden_states = self.fc2(hidden_states)

        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class MBartMoEDecoder(MBartDecoder):
    def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
        MBartPreTrainedModel.__init__(self, config)
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

        self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

        if embed_tokens is not None:
            self.embed_tokens.weight = embed_tokens.weight

        self.embed_positions = MBartLearnedPositionalEmbedding(
            config.max_position_embeddings,
            config.d_model,
        )
        # Language-specific MoE goes at second and second-to-last layer
        self.layers = nn.ModuleList([MBartMoEDecoderLayer(config, has_moe=(i in config.moe_layers) and config.use_moe) for i in range(config.decoder_layers)])
        self.layernorm_embedding = nn.LayerNorm(config.d_model)
        self.layer_norm = nn.LayerNorm(config.d_model)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        self_kv_cache: Optional[torch.Tensor] = None,
        cross_kv_cache: Optional[torch.Tensor] = None,
        past_token_count: Optional[int] = None,
        langs: Optional[torch.LongTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        use_cache = True
        return_dict = True

        input = input_ids
        input_shape = input.size()
        input_ids = input_ids.view(-1, input_shape[-1])

        # past_key_values_length
        past_key_values_length = past_token_count if self_kv_cache is not None else 0
        inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

        # embed positions
        positions = self.embed_positions(input, past_key_values_length)

        hidden_states = inputs_embeds + positions
        hidden_states = self.layernorm_embedding(hidden_states)

        # decoder layers
        all_hidden_states = None
        all_self_attns = None
        all_cross_attentions = None
        next_decoder_cache = () if use_cache else None

        for idx, decoder_layer in enumerate(self.layers):
            is_prefill = past_token_count == 0
            layer_self_kv_cache = self_kv_cache[idx] if self_kv_cache is not None else None
            layer_cross_kv_cache = cross_kv_cache[idx] if cross_kv_cache is not None else None
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                langs=langs,
                self_kv_cache=layer_self_kv_cache,
                cross_kv_cache=layer_cross_kv_cache,
                is_prefill=is_prefill,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=None,
                use_cache=use_cache,
            )
            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[1],)

        hidden_states = self.layer_norm(hidden_states)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )


class MBartMoEDecoderWrapper(MBartPreTrainedModel):
    """
    This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
    used in combination with the [`EncoderDecoderModel`] framework.
    """

    def __init__(self, config):
        super().__init__(config)
        self.decoder = MBartMoEDecoder(config)

    def forward(self, *args, **kwargs):
        return self.decoder(*args, **kwargs)


class MBartMoE(MBartForCausalLM):
    config_class = MBartMoEConfig
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config, **kwargs):
        config = copy.deepcopy(config)
        config.is_decoder = True
        config.is_encoder_decoder = False
        MBartPreTrainedModel.__init__(self, config)
        self.model = MBartMoEDecoderWrapper(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        self_kv_cache: Optional[torch.FloatTensor] = None,
        cross_kv_cache: Optional[torch.FloatTensor] = None,
        past_token_count: Optional[int] = None,
        langs: Optional[torch.LongTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            self_kv_cache=self_kv_cache,
            cross_kv_cache=cross_kv_cache,
            past_token_count=past_token_count,
            langs=langs,
            encoder_hidden_states=encoder_hidden_states,
        )

        logits = self.lm_head(outputs[0])

        if not return_dict:
            output = (logits,) + outputs[1:]
            return output

        return CausalLMOutputWithCrossAttentions(
            loss=None,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )

    def prune_moe_experts(self, keep_keys: List[int]):
        # Remove experts not specified in keep_keys
        str_keep_keys = [str(key) for key in keep_keys]
        for layer in self.model.decoder.layers:
            if not layer.has_moe:
                continue

            lang_keys = list(layer.moe.experts.keys())
            for lang in lang_keys:
                if lang not in str_keep_keys:
                    layer.moe.experts.pop(lang)
            layer.lang_codes = keep_keys