import copy from typing import Optional, List, Union, Tuple from transformers import MBartForCausalLM, MBartConfig from torch import nn from transformers.activations import ACT2FN from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions from transformers.models.mbart.modeling_mbart import MBartPreTrainedModel, MBartDecoder from .config import MBartMoEConfig import torch import math class MBartLearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int): # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim) def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): """`input_ids' shape is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids.shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ).expand(bsz, -1) return super().forward(positions + self.offset) class MBartExpertMLP(nn.Module): def __init__(self, config: MBartConfig, is_lg=False, is_xl=False): super().__init__() self.ffn_dim = config.d_expert if is_lg: self.ffn_dim = config.d_expert_lg if is_xl: self.ffn_dim = config.d_expert_xl self.hidden_dim = config.d_model self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.dropout = nn.Dropout(config.activation_dropout) self.act_fn = ACT2FN[config.activation_function] def forward(self, hidden_states): current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) current_hidden_states = self.w2(current_hidden_states) return current_hidden_states class MBartExpertLayer(nn.Module): # From mixtral, with modifications def __init__(self, config): super().__init__() self.dropout = nn.Dropout(config.activation_dropout) self.hidden_dim = config.d_model self.lg_lang_codes = sorted(config.lg_langs.values()) if hasattr(config, "lg_langs") else [] self.xl_lang_codes = sorted(config.xl_langs.values()) if hasattr(config, "xl_langs") else [] self.lang_codes = sorted(config.langs.values()) self.num_experts = len(self.lang_codes) self.experts = nn.ModuleDict({str(lang): MBartExpertMLP(config, is_lg=(lang in self.lg_lang_codes), is_xl=(lang in self.xl_lang_codes)) for lang in self.lang_codes}) def forward(self, hidden_states: torch.Tensor, langs: torch.LongTensor) -> torch.Tensor: batch_size, sequence_length, hidden_dim = hidden_states.shape final_hidden_states = torch.zeros( (batch_size, sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # Weight experts based on how many languages in the input routing_weights = 1 / ((langs > 3).sum(axis=-1)) # Set weights to 1 if zero experts activated routing_weights[torch.isinf(routing_weights)] = 1 unique_langs = langs.unique(dim=None, sorted=True) unique_langs = unique_langs[unique_langs > 3] # Remove start token # Loop over all available experts in the model and perform the computation on each expert for expert_lang in unique_langs: # Check which samples match with this expert lang_match = (langs == expert_lang).any(dim=-1) idx = torch.nonzero(lang_match, as_tuple=True)[0] if idx.shape[0] == 0: continue expert_layer = self.experts[str(expert_lang.item())] current_state = hidden_states[idx] current_hidden_states = expert_layer(current_state.view(-1, hidden_dim)) current_hidden_states = current_hidden_states.view(-1, sequence_length, hidden_dim) # Weight by number of languages in the input selected_routing_weights = routing_weights[idx].view(-1, 1, 1) current_hidden_states *= selected_routing_weights final_hidden_states.index_add_(0, idx, current_hidden_states) return final_hidden_states class MBartGQAttention(nn.Module): def __init__( self, embed_dim: int, num_heads: int, num_kv_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[MBartConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.num_kv_heads = num_kv_heads self.num_kv_groups = self.num_heads // self.num_kv_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, self.num_kv_heads * self.head_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, self.num_kv_heads * self.head_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def _shape_key_value(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, is_prefill: Optional[bool] = False, attention_mask: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if is_cross_attention: if is_prefill: # cross_attentions key_states = self._shape_key_value(self.k_proj(key_value_states), -1, bsz) value_states = self._shape_key_value(self.v_proj(key_value_states), -1, bsz) past_key_value = torch.cat([key_states.unsqueeze(0), value_states.unsqueeze(0)], dim=0) else: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] past_key_value = None # Self-attention else: if is_prefill: # initial prompt key_states = self._shape_key_value(self.k_proj(hidden_states), -1, bsz) value_states = self._shape_key_value(self.v_proj(hidden_states), -1, bsz) past_key_value = torch.cat([key_states[:, :, -tgt_len:].unsqueeze(0), value_states[:, :, -tgt_len:].unsqueeze(0)], dim=0) else: # reuse k, v, self_attention key_states = self._shape_key_value(self.k_proj(hidden_states), -1, bsz) value_states = self._shape_key_value(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = torch.cat([key_states[:, :, -tgt_len:].unsqueeze(0), value_states[:, :, -tgt_len:].unsqueeze(0)], dim=0) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) # Expand kv heads, then match query shape key_states = key_states.repeat_interleave(self.num_kv_groups, dim=1).reshape(*proj_shape) value_states = value_states.repeat_interleave(self.num_kv_groups, dim=1).reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if not is_cross_attention: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) attn_output = torch.bmm(attn_weights, value_states).view(bsz, self.num_heads, tgt_len, self.head_dim).transpose(1,2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, past_key_value class MBartMoEDecoderLayer(nn.Module): def __init__(self, config: MBartConfig, has_moe=False): super().__init__() self.embed_dim = config.d_model self.self_attn = MBartGQAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, num_kv_heads=config.kv_heads, dropout=config.attention_dropout, is_decoder=True, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = MBartGQAttention( self.embed_dim, config.decoder_attention_heads, num_kv_heads=config.kv_heads, dropout=config.attention_dropout, is_decoder=True, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.has_moe = has_moe if has_moe: self.moe = MBartExpertLayer(config) else: self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.LongTensor] = None, self_kv_cache: Optional[torch.Tensor] = None, cross_kv_cache: Optional[torch.Tensor] = None, is_prefill: Optional[bool] = False, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = True, ) -> torch.Tensor: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_kv_cache, is_prefill=is_prefill, attention_mask=attention_mask, ) hidden_states = residual + hidden_states # Cross-Attention Block if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple hidden_states, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, is_prefill=is_prefill, attention_mask=encoder_attention_mask, past_key_value=cross_kv_cache, ) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = (present_key_value, cross_attn_present_key_value) # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) if self.has_moe: hidden_states = self.moe(hidden_states, langs) else: hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.fc2(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if use_cache: outputs += (present_key_value,) return outputs class MBartMoEDecoder(MBartDecoder): def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None): MBartPreTrainedModel.__init__(self, config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = MBartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, ) # Language-specific MoE goes at second and second-to-last layer self.layers = nn.ModuleList([MBartMoEDecoderLayer(config, has_moe=(i in config.moe_layers) and config.use_moe) for i in range(config.decoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, self_kv_cache: Optional[torch.Tensor] = None, cross_kv_cache: Optional[torch.Tensor] = None, past_token_count: Optional[int] = None, langs: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: use_cache = True return_dict = True input = input_ids input_shape = input.size() input_ids = input_ids.view(-1, input_shape[-1]) # past_key_values_length past_key_values_length = past_token_count if self_kv_cache is not None else 0 inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = self.embed_positions(input, past_key_values_length) hidden_states = inputs_embeds + positions hidden_states = self.layernorm_embedding(hidden_states) # decoder layers all_hidden_states = None all_self_attns = None all_cross_attentions = None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): is_prefill = past_token_count == 0 layer_self_kv_cache = self_kv_cache[idx] if self_kv_cache is not None else None layer_cross_kv_cache = cross_kv_cache[idx] if cross_kv_cache is not None else None layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, langs=langs, self_kv_cache=layer_self_kv_cache, cross_kv_cache=layer_cross_kv_cache, is_prefill=is_prefill, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=None, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class MBartMoEDecoderWrapper(MBartPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = MBartMoEDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs) class MBartMoE(MBartForCausalLM): config_class = MBartMoEConfig _tied_weights_keys = ["lm_head.weight"] def __init__(self, config, **kwargs): config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False MBartPreTrainedModel.__init__(self, config) self.model = MBartMoEDecoderWrapper(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, self_kv_cache: Optional[torch.FloatTensor] = None, cross_kv_cache: Optional[torch.FloatTensor] = None, past_token_count: Optional[int] = None, langs: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, self_kv_cache=self_kv_cache, cross_kv_cache=cross_kv_cache, past_token_count=past_token_count, langs=langs, encoder_hidden_states=encoder_hidden_states, ) logits = self.lm_head(outputs[0]) if not return_dict: output = (logits,) + outputs[1:] return output return CausalLMOutputWithCrossAttentions( loss=None, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prune_moe_experts(self, keep_keys: List[int]): # Remove experts not specified in keep_keys str_keep_keys = [str(key) for key in keep_keys] for layer in self.model.decoder.layers: if not layer.has_moe: continue lang_keys = list(layer.moe.experts.keys()) for lang in lang_keys: if lang not in str_keep_keys: layer.moe.experts.pop(lang) layer.lang_codes = keep_keys