from typing import List from PIL import Image from surya.detection import batch_text_detection from surya.input.processing import slice_polys_from_image, slice_bboxes_from_image, convert_if_not_rgb from surya.postprocessing.text import sort_text_lines from surya.recognition import batch_recognition from surya.schema import TextLine, OCRResult def run_recognition(images: List[Image.Image], langs: List[List[str]], rec_model, rec_processor, bboxes: List[List[List[int]]] = None, polygons: List[List[List[List[int]]]] = None, batch_size=None) -> List[OCRResult]: # Polygons need to be in corner format - [[x1, y1], [x2, y2], [x3, y3], [x4, y4]], bboxes in [x1, y1, x2, y2] format assert bboxes is not None or polygons is not None assert len(images) == len(langs), "You need to pass in one list of languages for each image" images = convert_if_not_rgb(images) slice_map = [] all_slices = [] all_langs = [] for idx, (image, lang) in enumerate(zip(images, langs)): if polygons is not None: slices = slice_polys_from_image(image, polygons[idx]) else: slices = slice_bboxes_from_image(image, bboxes[idx]) slice_map.append(len(slices)) all_slices.extend(slices) all_langs.extend([lang] * len(slices)) rec_predictions, _ = batch_recognition(all_slices, all_langs, rec_model, rec_processor, batch_size=batch_size) predictions_by_image = [] slice_start = 0 for idx, (image, lang) in enumerate(zip(images, langs)): slice_end = slice_start + slice_map[idx] image_lines = rec_predictions[slice_start:slice_end] slice_start = slice_end text_lines = [] for i in range(len(image_lines)): if polygons is not None: poly = polygons[idx][i] else: bbox = bboxes[idx][i] poly = [[bbox[0], bbox[1]], [bbox[2], bbox[1]], [bbox[2], bbox[3]], [bbox[0], bbox[3]]] text_lines.append(TextLine( text=image_lines[i], polygon=poly )) pred = OCRResult( text_lines=text_lines, languages=lang, image_bbox=[0, 0, image.size[0], image.size[1]] ) predictions_by_image.append(pred) return predictions_by_image def run_ocr(images: List[Image.Image], langs: List[List[str]], det_model, det_processor, rec_model, rec_processor, batch_size=None) -> List[OCRResult]: images = convert_if_not_rgb(images) det_predictions = batch_text_detection(images, det_model, det_processor) all_slices = [] slice_map = [] all_langs = [] for idx, (det_pred, image, lang) in enumerate(zip(det_predictions, images, langs)): polygons = [p.polygon for p in det_pred.bboxes] slices = slice_polys_from_image(image, polygons) slice_map.append(len(slices)) all_langs.extend([lang] * len(slices)) all_slices.extend(slices) rec_predictions, confidence_scores = batch_recognition(all_slices, all_langs, rec_model, rec_processor, batch_size=batch_size) predictions_by_image = [] slice_start = 0 for idx, (image, det_pred, lang) in enumerate(zip(images, det_predictions, langs)): slice_end = slice_start + slice_map[idx] image_lines = rec_predictions[slice_start:slice_end] line_confidences = confidence_scores[slice_start:slice_end] slice_start = slice_end assert len(image_lines) == len(det_pred.bboxes) lines = [] for text_line, confidence, bbox in zip(image_lines, line_confidences, det_pred.bboxes): lines.append(TextLine( text=text_line, polygon=bbox.polygon, bbox=bbox.bbox, confidence=confidence )) lines = sort_text_lines(lines) predictions_by_image.append(OCRResult( text_lines=lines, languages=lang, image_bbox=det_pred.image_bbox )) return predictions_by_image