kettleguts commited on
Commit
0410488
1 Parent(s): ccdcad2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -15,6 +15,7 @@ language:
15
 
16
  # Model Card for kettleguts/zephyr-7b-beta_sparse05
17
 
 
18
  This is a pruned version of HuggingFaceH4/zephyr-7b-beta found [here](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta). Wanda pruning was used to introduce 50% sparsity into the linear layers. Read the paper [here](https://arxiv.org/abs/2306.11695).
19
 
20
 
@@ -41,7 +42,7 @@ This model should never be used for critical decisions involving health, life, e
41
 
42
  ## Bias, Risks, and Limitations
43
 
44
- [No safegaurd have been added to this model.](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta#bias-risks-and-limitations)
45
 
46
  ## How to Get Started with the Model
47
 
@@ -88,7 +89,7 @@ Output:
88
  Pending
89
 
90
 
91
- ## Model Examination [optional]
92
 
93
  <!-- Relevant interpretability work for the model goes here -->
94
  Pending
@@ -97,7 +98,7 @@ Pending
97
 
98
  The calculations necessary to prune this model required less than 1 hour of time on a T4 GPU in Colab.
99
 
100
- ## Technical Specifications [optional]
101
 
102
 
103
  #### Software
@@ -105,7 +106,7 @@ The calculations necessary to prune this model required less than 1 hour of time
105
  The bulk of this work was done using [Pytorch](https://pytorch.org/). They have an array of built-in [pruning tools](https://pytorch.org/docs/stable/nn.html#:~:text=Utility%20classes%20and%20functions%20for%20pruning%20Module%20parameters
106
  ) in torch.nn . Also check out the [tutorial](https://pytorch.org/tutorials/intermediate/pruning_tutorial.html) by [Michela Paganini](https://github.com/mickypaganini).
107
 
108
- ## Citation [optional]
109
 
110
  **BibTeX:**
111
  <code>
 
15
 
16
  # Model Card for kettleguts/zephyr-7b-beta_sparse05
17
 
18
+
19
  This is a pruned version of HuggingFaceH4/zephyr-7b-beta found [here](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta). Wanda pruning was used to introduce 50% sparsity into the linear layers. Read the paper [here](https://arxiv.org/abs/2306.11695).
20
 
21
 
 
42
 
43
  ## Bias, Risks, and Limitations
44
 
45
+ [No safegaurds have been added to this model.](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta#bias-risks-and-limitations)
46
 
47
  ## How to Get Started with the Model
48
 
 
89
  Pending
90
 
91
 
92
+ ## Model Examination
93
 
94
  <!-- Relevant interpretability work for the model goes here -->
95
  Pending
 
98
 
99
  The calculations necessary to prune this model required less than 1 hour of time on a T4 GPU in Colab.
100
 
101
+ ## Technical Specifications
102
 
103
 
104
  #### Software
 
106
  The bulk of this work was done using [Pytorch](https://pytorch.org/). They have an array of built-in [pruning tools](https://pytorch.org/docs/stable/nn.html#:~:text=Utility%20classes%20and%20functions%20for%20pruning%20Module%20parameters
107
  ) in torch.nn . Also check out the [tutorial](https://pytorch.org/tutorials/intermediate/pruning_tutorial.html) by [Michela Paganini](https://github.com/mickypaganini).
108
 
109
+ ## Citation
110
 
111
  **BibTeX:**
112
  <code>