keyblade95
commited on
Commit
·
e866317
1
Parent(s):
6df73e5
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 258.10 +/- 22.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fab2f99c040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fab2f99c0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fab2f99c160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fab2f99c1f0>", "_build": "<function ActorCriticPolicy._build at 0x7fab2f99c280>", "forward": "<function ActorCriticPolicy.forward at 0x7fab2f99c310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fab2f99c3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fab2f99c430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fab2f99c4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fab2f99c550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fab2f99c5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fab2f9984e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673184737754102001, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABUhqL6HlmU/QomqPuouuL4EoVG9cU+7PQAAAAAAAAAATWAWvbiWgrlmOZC5MqaItN1/1rkSD6g4AACAPwAAgD8mzMW9FLCruuxyMTlX9zg0vQnRuQYLS7gAAIA/AACAP8Cqrj13vG8+4Bk2vobJar7WoRG9E2njPAAAAAAAAAAA5rynva4ppbremJe1JiXYr5iP0rlQ/6w0AAAAAAAAgD/N3Am9KXwNuqbd2rZEkywxChRsu2FMADYAAIA/AACAPwBcN72u+cW6Np23OkFA7Tw79cA5wgTKPQAAgD8AAIA/M1sHO+GIm7pNmXS6cFXSNaOWtroOG405AACAPwAAgD/z37S94UySumQnjDl2ZYk1Ncq3uh5OhzQAAIA/AACAP1qlhb2PZnm63ugrNsDkCDGWdMm6XfFNtQAAgD8AAIA/Zn+svNdDRLkdM9i7enu1ONwogzuTmX86AACAPwAAgD9mEqS8SA+Zun5dD7gO8yqz8H8sOnp2JDcAAIA/AACAP+ZlAr0F7aq7ZhMpvFTKmTwj9xC90h2CPQAAgD8AAIA/JpKVvQuKzT4eHaq8XyGNvqio+b0JVjQ9AAAAAAAAAADNtey8KfB9us8kyrp9Ugi2Co5YupPd6jkAAIA/AACAP2bekbykhE86EAR4vn9AML7PKWC91LkTPwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcHmsGZmdZUCUhpRSlIwBbJRN6AOMAXSUR0CRTaEV32VWdX2UKGgGaAloD0MISKXY0TgDY0CUhpRSlGgVTegDaBZHQJFTDhBJI2B1fZQoaAZoCWgPQwjU8gNX+VFjQJSGlFKUaBVN6ANoFkdAkVWQccU/OnV9lChoBmgJaA9DCKc8uhEWymNAlIaUUpRoFU3oA2gWR0CRYLpw0fozdX2UKGgGaAloD0MIFyzVBbwBZUCUhpRSlGgVTegDaBZHQJFiHQmeDnN1fZQoaAZoCWgPQwgMBWwHo2phQJSGlFKUaBVN6ANoFkdAkWZsDOkcj3V9lChoBmgJaA9DCFPKayX052FAlIaUUpRoFU3oA2gWR0CRZr/fwZwXdX2UKGgGaAloD0MIXp8561M+ZECUhpRSlGgVTegDaBZHQJFoT7EYO2B1fZQoaAZoCWgPQwjf+rDeqDxlQJSGlFKUaBVN6ANoFkdAkWxlBMSK33V9lChoBmgJaA9DCHPXEvLBwGZAlIaUUpRoFU3oA2gWR0CRb0vRqoIfdX2UKGgGaAloD0MIjiEAOPZAY0CUhpRSlGgVTegDaBZHQJFyRRKpT/B1fZQoaAZoCWgPQwjE7GXbaSBvQJSGlFKUaBVNGAJoFkdAkYgA1aW5Y3V9lChoBmgJaA9DCJXwhF7/N2ZAlIaUUpRoFU3oA2gWR0CRip+PRzBAdX2UKGgGaAloD0MIz4O7s/ajZUCUhpRSlGgVTegDaBZHQJGK4b83uNR1fZQoaAZoCWgPQwhRTrSrEFlhQJSGlFKUaBVN6ANoFkdAkYvIUnG83HV9lChoBmgJaA9DCFpo5zQLJGNAlIaUUpRoFU3oA2gWR0CRl+rHlwLmdX2UKGgGaAloD0MIUFJgAcx6Y0CUhpRSlGgVTegDaBZHQJGYgQarFOx1fZQoaAZoCWgPQwgwn6wYLrBgQJSGlFKUaBVN6ANoFkdAkZoMHObAlHV9lChoBmgJaA9DCONrzyyJ3HBAlIaUUpRoFU1HAWgWR0CRm/qcVgx8dX2UKGgGaAloD0MI5gMCnUncZECUhpRSlGgVTegDaBZHQJGeL6Mzdk91fZQoaAZoCWgPQwhoCTICKkRRQJSGlFKUaBVL72gWR0CRo/Ooo/iYdX2UKGgGaAloD0MIxlG5iVpTZECUhpRSlGgVTegDaBZHQJGpo9A5aNd1fZQoaAZoCWgPQwgRct7/R15jQJSGlFKUaBVN6ANoFkdAkarDQu27WnV9lChoBmgJaA9DCP/MID6wXmdAlIaUUpRoFU3oA2gWR0CRrnXN1QqJdX2UKGgGaAloD0MIVMiVehbZZ0CUhpRSlGgVTegDaBZHQJGuxPva11J1fZQoaAZoCWgPQwgDXmbY6ORxQJSGlFKUaBVN1wJoFkdAkbAMibDuSnV9lChoBmgJaA9DCIfAkUADa2RAlIaUUpRoFU3oA2gWR0CRsCL/S6UadX2UKGgGaAloD0MIfv578Nr3X0CUhpRSlGgVTegDaBZHQJGzVzLfUF11fZQoaAZoCWgPQwg2donqLSRnQJSGlFKUaBVN6ANoFkdAkbWiQgcLjXV9lChoBmgJaA9DCAMlBRbAmF5AlIaUUpRoFU3oA2gWR0CRuAhGH58CdX2UKGgGaAloD0MIp+mzA643OkCUhpRSlGgVS/ZoFkdAkbl/YJ3PiXV9lChoBmgJaA9DCF3BNuLJDGJAlIaUUpRoFU3oA2gWR0CRzWRmK64EdX2UKGgGaAloD0MIda4oJQRJX0CUhpRSlGgVTegDaBZHQJHQuXD3ueB1fZQoaAZoCWgPQwhVMCqpE5duQJSGlFKUaBVNYANoFkdAkdY8wHqu83V9lChoBmgJaA9DCHtLOV/sv2ZAlIaUUpRoFU3oA2gWR0CR33rCm/FjdX2UKGgGaAloD0MICVG+oAVAaECUhpRSlGgVTegDaBZHQJHhjhYNiH91fZQoaAZoCWgPQwjLL4MxIktKQJSGlFKUaBVL72gWR0CR43mAbyYpdX2UKGgGaAloD0MIMpOoF3zCY0CUhpRSlGgVTegDaBZHQJHj15Pdl/Z1fZQoaAZoCWgPQwgwnGuY4dFxQJSGlFKUaBVNAgJoFkdAkegSEpRXOnV9lChoBmgJaA9DCP8j06FT2GxAlIaUUpRoFU36AmgWR0CR6S+H8CPqdX2UKGgGaAloD0MIpFUt6ag3ZkCUhpRSlGgVTegDaBZHQJHpPJp35et1fZQoaAZoCWgPQwjQuHAgpFxsQJSGlFKUaBVNgANoFkdAkelc45tFa3V9lChoBmgJaA9DCBu4A3VKr2NAlIaUUpRoFU3oA2gWR0CR7sfMfRu1dX2UKGgGaAloD0MIZVHYRVFYYECUhpRSlGgVTegDaBZHQJHyeZQYUFl1fZQoaAZoCWgPQwjeVnptNg9kQJSGlFKUaBVN6ANoFkdAkfPwPZqVQnV9lChoBmgJaA9DCPlp3JtfG2VAlIaUUpRoFU3oA2gWR0CR9+FBIFvAdX2UKGgGaAloD0MIhh3GpD82ZECUhpRSlGgVTegDaBZHQJH6mnpB5X51fZQoaAZoCWgPQwh8uU+OgoZhQJSGlFKUaBVN6ANoFkdAkf2BybQTmHV9lChoBmgJaA9DCFsomZzaH2ZAlIaUUpRoFU3oA2gWR0CR/ytz0Yj0dX2UKGgGaAloD0MIHccPlUbzcECUhpRSlGgVTdgDaBZHQJIWB2U0Nz91fZQoaAZoCWgPQwh0forjwPNEQJSGlFKUaBVL12gWR0CSGX6asp5NdX2UKGgGaAloD0MI5A8GnvsocUCUhpRSlGgVTZMBaBZHQJIbdLeyiVV1fZQoaAZoCWgPQwj6KCMugNxsQJSGlFKUaBVNBwNoFkdAkhutXo1UEXV9lChoBmgJaA9DCBB1H4BUM3FAlIaUUpRoFU3GAWgWR0CSH4y9EkSmdX2UKGgGaAloD0MIGf8+40JXckCUhpRSlGgVTdACaBZHQJIfyXZ5AyF1fZQoaAZoCWgPQwjZ7bPKzEJxQJSGlFKUaBVNTQNoFkdAkiFV8XvYvnV9lChoBmgJaA9DCPCLS1XaC2JAlIaUUpRoFU3oA2gWR0CSJMXIlt0ndX2UKGgGaAloD0MIRG/x8B7EZUCUhpRSlGgVTegDaBZHQJIoWorFwUB1fZQoaAZoCWgPQwi/C1uzFTVuQJSGlFKUaBVNQQJoFkdAkijqeTV2BHV9lChoBmgJaA9DCJ0Te2jfpXFAlIaUUpRoFU2xA2gWR0CSK6IClrM1dX2UKGgGaAloD0MIW7bWFwlxcECUhpRSlGgVTRQCaBZHQJItMIF/x2B1fZQoaAZoCWgPQwhTPgRVo45iQJSGlFKUaBVN6ANoFkdAki4gTAWSEHV9lChoBmgJaA9DCBWt3AvMi2dAlIaUUpRoFU3oA2gWR0CSLlCLMs6JdX2UKGgGaAloD0MIjLysiUUTc0CUhpRSlGgVTasBaBZHQJIzzAN5MUR1fZQoaAZoCWgPQwjHuriNBnRjQJSGlFKUaBVN6ANoFkdAkjRwOjIq9XV9lChoBmgJaA9DCHiazHhbdVFAlIaUUpRoFUvJaBZHQJI1OEGqxTt1fZQoaAZoCWgPQwhPr5RlyGNzQJSGlFKUaBVNUgFoFkdAkjj2OZLIxXV9lChoBmgJaA9DCHqPM03YKHJAlIaUUpRoFU3PAWgWR0CSOu6mwaBJdX2UKGgGaAloD0MIBWoxeBjRcECUhpRSlGgVTYsDaBZHQJI9w9IPK+11fZQoaAZoCWgPQwjkE7Lzdm1wQJSGlFKUaBVNewNoFkdAkkHgIt16mnV9lChoBmgJaA9DCMGqevndQHFAlIaUUpRoFU01AmgWR0CSQ9EUj9n9dX2UKGgGaAloD0MISGx3D1CNb0CUhpRSlGgVTegBaBZHQJJFUztTkyV1fZQoaAZoCWgPQwjLg/QUuVlwQJSGlFKUaBVNDANoFkdAklriOFQEZHV9lChoBmgJaA9DCAZmhSIdvHBAlIaUUpRoFU29A2gWR0CSXEh/iHZcdX2UKGgGaAloD0MIUS/4NKfBbkCUhpRSlGgVTZEBaBZHQJJdBqesgdR1fZQoaAZoCWgPQwiT/fM0IJFwQJSGlFKUaBVNzgNoFkdAkl7X0f5k9XV9lChoBmgJaA9DCBQGZRpNgWJAlIaUUpRoFU3oA2gWR0CSYEZHd43WdX2UKGgGaAloD0MIKCmwAGaHckCUhpRSlGgVTYICaBZHQJJh10A93bF1fZQoaAZoCWgPQwjfF5eqtD9jQJSGlFKUaBVN6ANoFkdAkmRGqYJE6XV9lChoBmgJaA9DCF0yjpHsoXBAlIaUUpRoFU09AWgWR0CSZY6eoUBXdX2UKGgGaAloD0MIEXNJ1Xb8cECUhpRSlGgVTU0BaBZHQJJn7/xUedV1fZQoaAZoCWgPQwhSSZ2AphJwQJSGlFKUaBVN/wFoFkdAkmrgeFL39XV9lChoBmgJaA9DCPhrskZ9EnBAlIaUUpRoFU0AA2gWR0CSbVzz3AVPdX2UKGgGaAloD0MIyHpq9ZVBcECUhpRSlGgVTc4BaBZHQJJvpSzgMtt1fZQoaAZoCWgPQwiD91W5EEFxQJSGlFKUaBVNHQFoFkdAknIhqXWvsHV9lChoBmgJaA9DCHEd44oLp25AlIaUUpRoFU3cAmgWR0CScvT/ACXAdX2UKGgGaAloD0MIYOemzbiAZECUhpRSlGgVTegDaBZHQJJzH6tT1kF1fZQoaAZoCWgPQwj8cJAQZbZwQJSGlFKUaBVNhgFoFkdAknNfNZ/0/XV9lChoBmgJaA9DCLsnDws1WXFAlIaUUpRoFU3IAWgWR0CSd8uJUHY6dX2UKGgGaAloD0MINpTai+gzYkCUhpRSlGgVTegDaBZHQJJ5J/qgRK91fZQoaAZoCWgPQwjsZ7EUyY9tQJSGlFKUaBVNsQFoFkdAknpSoXKr73V9lChoBmgJaA9DCDcAGxBhBnJAlIaUUpRoFU1+AWgWR0CSel+SKWLQdX2UKGgGaAloD0MIwCDp06rna0CUhpRSlGgVTYsCaBZHQJJ8LmbLEDR1fZQoaAZoCWgPQwgEPGnh8vhyQJSGlFKUaBVNUwFoFkdAkn00u6ErXnV9lChoBmgJaA9DCKDCEaTSpGJAlIaUUpRoFU3oA2gWR0CSfUyKNyYHdX2UKGgGaAloD0MIMPKyJhY0cECUhpRSlGgVTZcCaBZHQJJ+K/RE4Nt1fZQoaAZoCWgPQwhkWTDxR3FtQJSGlFKUaBVN9QJoFkdAkn/00vXbunV9lChoBmgJaA9DCPVIg9uadHBAlIaUUpRoFU1cA2gWR0CSg41He7+UdX2UKGgGaAloD0MIlgSoqaXpcUCUhpRSlGgVTZkBaBZHQJKEePn0TUR1fZQoaAZoCWgPQwg6WWq9339tQJSGlFKUaBVNoAFoFkdAkoWSlnAZbnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e110a0962e8c853e5373102be61a903f17119452eb28f308291d1748be9495b1
|
3 |
+
size 147214
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fab2f99c040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fab2f99c0d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fab2f99c160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fab2f99c1f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fab2f99c280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fab2f99c310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fab2f99c3a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fab2f99c430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fab2f99c4c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fab2f99c550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fab2f99c5e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fab2f9984e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673184737754102001,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABUhqL6HlmU/QomqPuouuL4EoVG9cU+7PQAAAAAAAAAATWAWvbiWgrlmOZC5MqaItN1/1rkSD6g4AACAPwAAgD8mzMW9FLCruuxyMTlX9zg0vQnRuQYLS7gAAIA/AACAP8Cqrj13vG8+4Bk2vobJar7WoRG9E2njPAAAAAAAAAAA5rynva4ppbremJe1JiXYr5iP0rlQ/6w0AAAAAAAAgD/N3Am9KXwNuqbd2rZEkywxChRsu2FMADYAAIA/AACAPwBcN72u+cW6Np23OkFA7Tw79cA5wgTKPQAAgD8AAIA/M1sHO+GIm7pNmXS6cFXSNaOWtroOG405AACAPwAAgD/z37S94UySumQnjDl2ZYk1Ncq3uh5OhzQAAIA/AACAP1qlhb2PZnm63ugrNsDkCDGWdMm6XfFNtQAAgD8AAIA/Zn+svNdDRLkdM9i7enu1ONwogzuTmX86AACAPwAAgD9mEqS8SA+Zun5dD7gO8yqz8H8sOnp2JDcAAIA/AACAP+ZlAr0F7aq7ZhMpvFTKmTwj9xC90h2CPQAAgD8AAIA/JpKVvQuKzT4eHaq8XyGNvqio+b0JVjQ9AAAAAAAAAADNtey8KfB9us8kyrp9Ugi2Co5YupPd6jkAAIA/AACAP2bekbykhE86EAR4vn9AML7PKWC91LkTPwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcHmsGZmdZUCUhpRSlIwBbJRN6AOMAXSUR0CRTaEV32VWdX2UKGgGaAloD0MISKXY0TgDY0CUhpRSlGgVTegDaBZHQJFTDhBJI2B1fZQoaAZoCWgPQwjU8gNX+VFjQJSGlFKUaBVN6ANoFkdAkVWQccU/OnV9lChoBmgJaA9DCKc8uhEWymNAlIaUUpRoFU3oA2gWR0CRYLpw0fozdX2UKGgGaAloD0MIFyzVBbwBZUCUhpRSlGgVTegDaBZHQJFiHQmeDnN1fZQoaAZoCWgPQwgMBWwHo2phQJSGlFKUaBVN6ANoFkdAkWZsDOkcj3V9lChoBmgJaA9DCFPKayX052FAlIaUUpRoFU3oA2gWR0CRZr/fwZwXdX2UKGgGaAloD0MIXp8561M+ZECUhpRSlGgVTegDaBZHQJFoT7EYO2B1fZQoaAZoCWgPQwjf+rDeqDxlQJSGlFKUaBVN6ANoFkdAkWxlBMSK33V9lChoBmgJaA9DCHPXEvLBwGZAlIaUUpRoFU3oA2gWR0CRb0vRqoIfdX2UKGgGaAloD0MIjiEAOPZAY0CUhpRSlGgVTegDaBZHQJFyRRKpT/B1fZQoaAZoCWgPQwjE7GXbaSBvQJSGlFKUaBVNGAJoFkdAkYgA1aW5Y3V9lChoBmgJaA9DCJXwhF7/N2ZAlIaUUpRoFU3oA2gWR0CRip+PRzBAdX2UKGgGaAloD0MIz4O7s/ajZUCUhpRSlGgVTegDaBZHQJGK4b83uNR1fZQoaAZoCWgPQwhRTrSrEFlhQJSGlFKUaBVN6ANoFkdAkYvIUnG83HV9lChoBmgJaA9DCFpo5zQLJGNAlIaUUpRoFU3oA2gWR0CRl+rHlwLmdX2UKGgGaAloD0MIUFJgAcx6Y0CUhpRSlGgVTegDaBZHQJGYgQarFOx1fZQoaAZoCWgPQwgwn6wYLrBgQJSGlFKUaBVN6ANoFkdAkZoMHObAlHV9lChoBmgJaA9DCONrzyyJ3HBAlIaUUpRoFU1HAWgWR0CRm/qcVgx8dX2UKGgGaAloD0MI5gMCnUncZECUhpRSlGgVTegDaBZHQJGeL6Mzdk91fZQoaAZoCWgPQwhoCTICKkRRQJSGlFKUaBVL72gWR0CRo/Ooo/iYdX2UKGgGaAloD0MIxlG5iVpTZECUhpRSlGgVTegDaBZHQJGpo9A5aNd1fZQoaAZoCWgPQwgRct7/R15jQJSGlFKUaBVN6ANoFkdAkarDQu27WnV9lChoBmgJaA9DCP/MID6wXmdAlIaUUpRoFU3oA2gWR0CRrnXN1QqJdX2UKGgGaAloD0MIVMiVehbZZ0CUhpRSlGgVTegDaBZHQJGuxPva11J1fZQoaAZoCWgPQwgDXmbY6ORxQJSGlFKUaBVN1wJoFkdAkbAMibDuSnV9lChoBmgJaA9DCIfAkUADa2RAlIaUUpRoFU3oA2gWR0CRsCL/S6UadX2UKGgGaAloD0MIfv578Nr3X0CUhpRSlGgVTegDaBZHQJGzVzLfUF11fZQoaAZoCWgPQwg2donqLSRnQJSGlFKUaBVN6ANoFkdAkbWiQgcLjXV9lChoBmgJaA9DCAMlBRbAmF5AlIaUUpRoFU3oA2gWR0CRuAhGH58CdX2UKGgGaAloD0MIp+mzA643OkCUhpRSlGgVS/ZoFkdAkbl/YJ3PiXV9lChoBmgJaA9DCF3BNuLJDGJAlIaUUpRoFU3oA2gWR0CRzWRmK64EdX2UKGgGaAloD0MIda4oJQRJX0CUhpRSlGgVTegDaBZHQJHQuXD3ueB1fZQoaAZoCWgPQwhVMCqpE5duQJSGlFKUaBVNYANoFkdAkdY8wHqu83V9lChoBmgJaA9DCHtLOV/sv2ZAlIaUUpRoFU3oA2gWR0CR33rCm/FjdX2UKGgGaAloD0MICVG+oAVAaECUhpRSlGgVTegDaBZHQJHhjhYNiH91fZQoaAZoCWgPQwjLL4MxIktKQJSGlFKUaBVL72gWR0CR43mAbyYpdX2UKGgGaAloD0MIMpOoF3zCY0CUhpRSlGgVTegDaBZHQJHj15Pdl/Z1fZQoaAZoCWgPQwgwnGuY4dFxQJSGlFKUaBVNAgJoFkdAkegSEpRXOnV9lChoBmgJaA9DCP8j06FT2GxAlIaUUpRoFU36AmgWR0CR6S+H8CPqdX2UKGgGaAloD0MIpFUt6ag3ZkCUhpRSlGgVTegDaBZHQJHpPJp35et1fZQoaAZoCWgPQwjQuHAgpFxsQJSGlFKUaBVNgANoFkdAkelc45tFa3V9lChoBmgJaA9DCBu4A3VKr2NAlIaUUpRoFU3oA2gWR0CR7sfMfRu1dX2UKGgGaAloD0MIZVHYRVFYYECUhpRSlGgVTegDaBZHQJHyeZQYUFl1fZQoaAZoCWgPQwjeVnptNg9kQJSGlFKUaBVN6ANoFkdAkfPwPZqVQnV9lChoBmgJaA9DCPlp3JtfG2VAlIaUUpRoFU3oA2gWR0CR9+FBIFvAdX2UKGgGaAloD0MIhh3GpD82ZECUhpRSlGgVTegDaBZHQJH6mnpB5X51fZQoaAZoCWgPQwh8uU+OgoZhQJSGlFKUaBVN6ANoFkdAkf2BybQTmHV9lChoBmgJaA9DCFsomZzaH2ZAlIaUUpRoFU3oA2gWR0CR/ytz0Yj0dX2UKGgGaAloD0MIHccPlUbzcECUhpRSlGgVTdgDaBZHQJIWB2U0Nz91fZQoaAZoCWgPQwh0forjwPNEQJSGlFKUaBVL12gWR0CSGX6asp5NdX2UKGgGaAloD0MI5A8GnvsocUCUhpRSlGgVTZMBaBZHQJIbdLeyiVV1fZQoaAZoCWgPQwj6KCMugNxsQJSGlFKUaBVNBwNoFkdAkhutXo1UEXV9lChoBmgJaA9DCBB1H4BUM3FAlIaUUpRoFU3GAWgWR0CSH4y9EkSmdX2UKGgGaAloD0MIGf8+40JXckCUhpRSlGgVTdACaBZHQJIfyXZ5AyF1fZQoaAZoCWgPQwjZ7bPKzEJxQJSGlFKUaBVNTQNoFkdAkiFV8XvYvnV9lChoBmgJaA9DCPCLS1XaC2JAlIaUUpRoFU3oA2gWR0CSJMXIlt0ndX2UKGgGaAloD0MIRG/x8B7EZUCUhpRSlGgVTegDaBZHQJIoWorFwUB1fZQoaAZoCWgPQwi/C1uzFTVuQJSGlFKUaBVNQQJoFkdAkijqeTV2BHV9lChoBmgJaA9DCJ0Te2jfpXFAlIaUUpRoFU2xA2gWR0CSK6IClrM1dX2UKGgGaAloD0MIW7bWFwlxcECUhpRSlGgVTRQCaBZHQJItMIF/x2B1fZQoaAZoCWgPQwhTPgRVo45iQJSGlFKUaBVN6ANoFkdAki4gTAWSEHV9lChoBmgJaA9DCBWt3AvMi2dAlIaUUpRoFU3oA2gWR0CSLlCLMs6JdX2UKGgGaAloD0MIjLysiUUTc0CUhpRSlGgVTasBaBZHQJIzzAN5MUR1fZQoaAZoCWgPQwjHuriNBnRjQJSGlFKUaBVN6ANoFkdAkjRwOjIq9XV9lChoBmgJaA9DCHiazHhbdVFAlIaUUpRoFUvJaBZHQJI1OEGqxTt1fZQoaAZoCWgPQwhPr5RlyGNzQJSGlFKUaBVNUgFoFkdAkjj2OZLIxXV9lChoBmgJaA9DCHqPM03YKHJAlIaUUpRoFU3PAWgWR0CSOu6mwaBJdX2UKGgGaAloD0MIBWoxeBjRcECUhpRSlGgVTYsDaBZHQJI9w9IPK+11fZQoaAZoCWgPQwjkE7Lzdm1wQJSGlFKUaBVNewNoFkdAkkHgIt16mnV9lChoBmgJaA9DCMGqevndQHFAlIaUUpRoFU01AmgWR0CSQ9EUj9n9dX2UKGgGaAloD0MISGx3D1CNb0CUhpRSlGgVTegBaBZHQJJFUztTkyV1fZQoaAZoCWgPQwjLg/QUuVlwQJSGlFKUaBVNDANoFkdAklriOFQEZHV9lChoBmgJaA9DCAZmhSIdvHBAlIaUUpRoFU29A2gWR0CSXEh/iHZcdX2UKGgGaAloD0MIUS/4NKfBbkCUhpRSlGgVTZEBaBZHQJJdBqesgdR1fZQoaAZoCWgPQwiT/fM0IJFwQJSGlFKUaBVNzgNoFkdAkl7X0f5k9XV9lChoBmgJaA9DCBQGZRpNgWJAlIaUUpRoFU3oA2gWR0CSYEZHd43WdX2UKGgGaAloD0MIKCmwAGaHckCUhpRSlGgVTYICaBZHQJJh10A93bF1fZQoaAZoCWgPQwjfF5eqtD9jQJSGlFKUaBVN6ANoFkdAkmRGqYJE6XV9lChoBmgJaA9DCF0yjpHsoXBAlIaUUpRoFU09AWgWR0CSZY6eoUBXdX2UKGgGaAloD0MIEXNJ1Xb8cECUhpRSlGgVTU0BaBZHQJJn7/xUedV1fZQoaAZoCWgPQwhSSZ2AphJwQJSGlFKUaBVN/wFoFkdAkmrgeFL39XV9lChoBmgJaA9DCPhrskZ9EnBAlIaUUpRoFU0AA2gWR0CSbVzz3AVPdX2UKGgGaAloD0MIyHpq9ZVBcECUhpRSlGgVTc4BaBZHQJJvpSzgMtt1fZQoaAZoCWgPQwiD91W5EEFxQJSGlFKUaBVNHQFoFkdAknIhqXWvsHV9lChoBmgJaA9DCHEd44oLp25AlIaUUpRoFU3cAmgWR0CScvT/ACXAdX2UKGgGaAloD0MIYOemzbiAZECUhpRSlGgVTegDaBZHQJJzH6tT1kF1fZQoaAZoCWgPQwj8cJAQZbZwQJSGlFKUaBVNhgFoFkdAknNfNZ/0/XV9lChoBmgJaA9DCLsnDws1WXFAlIaUUpRoFU3IAWgWR0CSd8uJUHY6dX2UKGgGaAloD0MINpTai+gzYkCUhpRSlGgVTegDaBZHQJJ5J/qgRK91fZQoaAZoCWgPQwjsZ7EUyY9tQJSGlFKUaBVNsQFoFkdAknpSoXKr73V9lChoBmgJaA9DCDcAGxBhBnJAlIaUUpRoFU1+AWgWR0CSel+SKWLQdX2UKGgGaAloD0MIwCDp06rna0CUhpRSlGgVTYsCaBZHQJJ8LmbLEDR1fZQoaAZoCWgPQwgEPGnh8vhyQJSGlFKUaBVNUwFoFkdAkn00u6ErXnV9lChoBmgJaA9DCKDCEaTSpGJAlIaUUpRoFU3oA2gWR0CSfUyKNyYHdX2UKGgGaAloD0MIMPKyJhY0cECUhpRSlGgVTZcCaBZHQJJ+K/RE4Nt1fZQoaAZoCWgPQwhkWTDxR3FtQJSGlFKUaBVN9QJoFkdAkn/00vXbunV9lChoBmgJaA9DCPVIg9uadHBAlIaUUpRoFU1cA2gWR0CSg41He7+UdX2UKGgGaAloD0MIlgSoqaXpcUCUhpRSlGgVTZkBaBZHQJKEePn0TUR1fZQoaAZoCWgPQwg6WWq9339tQJSGlFKUaBVNoAFoFkdAkoWSlnAZbnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0be58b09285bfe43a627bbb1ff4d9a711d8ec727b1d590f6df399de72ea42af2
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:334ab63b9ee3e2ed302ed00caec418006dd735d5e1c87905707bee2beb4820a5
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (214 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 258.1029745931063, "std_reward": 22.96727424588946, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T14:14:42.480908"}
|