Upload folder using huggingface_hub
Browse files- config.json +37 -0
- configuration_grok.py +151 -0
- generation_config.json +7 -0
- modeling_grok.py +838 -0
- pytorch_model-00001-of-00019.bin +3 -0
- pytorch_model-00002-of-00019.bin +3 -0
- pytorch_model-00003-of-00019.bin +3 -0
- pytorch_model-00004-of-00019.bin +3 -0
- pytorch_model-00005-of-00019.bin +3 -0
- pytorch_model-00006-of-00019.bin +3 -0
- pytorch_model-00007-of-00019.bin +3 -0
- pytorch_model-00008-of-00019.bin +3 -0
- pytorch_model-00009-of-00019.bin +3 -0
- pytorch_model-00010-of-00019.bin +3 -0
- pytorch_model-00011-of-00019.bin +3 -0
- pytorch_model-00012-of-00019.bin +3 -0
- pytorch_model-00013-of-00019.bin +3 -0
- pytorch_model-00014-of-00019.bin +3 -0
- pytorch_model-00015-of-00019.bin +3 -0
- pytorch_model-00016-of-00019.bin +3 -0
- pytorch_model-00017-of-00019.bin +3 -0
- pytorch_model-00018-of-00019.bin +3 -0
- pytorch_model-00019-of-00019.bin +3 -0
- pytorch_model.bin.index.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +42 -0
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "hf/",
|
3 |
+
"architectures": [
|
4 |
+
"GrokForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"attn_output_multiplier": 0.08838834764831845,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_grok.GrokConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_grok.GrokForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"embedding_multiplier_scale": 78.38367176906169,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"hidden_act": "gelu",
|
16 |
+
"hidden_size": 6144,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 32768,
|
19 |
+
"max_position_embeddings": 8192,
|
20 |
+
"model_type": "grok",
|
21 |
+
"num_attention_heads": 48,
|
22 |
+
"num_experts_per_tok": 2,
|
23 |
+
"num_hidden_layers": 64,
|
24 |
+
"num_key_value_heads": 8,
|
25 |
+
"num_local_experts": 8,
|
26 |
+
"output_multiplier_scale": 0.5773502691896257,
|
27 |
+
"output_router_logits": false,
|
28 |
+
"pad_token_id": 0,
|
29 |
+
"rms_norm_eps": 1e-05,
|
30 |
+
"rope_theta": 100000.0,
|
31 |
+
"router_aux_loss_coef": 0.02,
|
32 |
+
"sliding_window": null,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.38.2",
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 131072
|
37 |
+
}
|
configuration_grok.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mixtral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Grok model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
class GrokConfig(PretrainedConfig):
|
25 |
+
r"""
|
26 |
+
This is the configuration class to store the configuration of a [`GrokModel`].
|
27 |
+
|
28 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
29 |
+
documentation from [`PretrainedConfig`] for more information.
|
30 |
+
|
31 |
+
|
32 |
+
Args:
|
33 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
34 |
+
Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
|
35 |
+
`inputs_ids` passed when calling [`MixtralModel`]
|
36 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
37 |
+
Dimension of the hidden representations.
|
38 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
39 |
+
Dimension of the MLP representations.
|
40 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
41 |
+
Number of hidden layers in the Transformer encoder.
|
42 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
43 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
44 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
45 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
46 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
47 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
48 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
49 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
50 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
51 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
52 |
+
The non-linear activation function (function or string) in the decoder.
|
53 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
54 |
+
The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
|
55 |
+
allows sequence of up to 4096*32 tokens.
|
56 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
57 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
58 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
59 |
+
The epsilon used by the rms normalization layers.
|
60 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
61 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
62 |
+
relevant if `config.is_decoder=True`.
|
63 |
+
pad_token_id (`int`, *optional*):
|
64 |
+
The id of the padding token.
|
65 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
66 |
+
The id of the "beginning-of-sequence" token.
|
67 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
68 |
+
The id of the "end-of-sequence" token.
|
69 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether the model's input and output word embeddings should be tied.
|
71 |
+
rope_theta (`float`, *optional*, defaults to 100000.0):
|
72 |
+
The base period of the RoPE embeddings.
|
73 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
74 |
+
The dropout ratio for the attention probabilities.
|
75 |
+
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
76 |
+
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
77 |
+
parameter
|
78 |
+
num_local_experts (`int`, *optional*, defaults to 8):
|
79 |
+
Number of experts per Sparse MLP layer.
|
80 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
81 |
+
Whether or not the router logits should be returned by the model. Enabeling this will also
|
82 |
+
allow the model to output the auxiliary loss. See [here]() for more details
|
83 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
84 |
+
The aux loss factor for the total loss.
|
85 |
+
|
86 |
+
"""
|
87 |
+
|
88 |
+
model_type = "grok"
|
89 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
90 |
+
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
vocab_size=131072,
|
94 |
+
hidden_size=6144,
|
95 |
+
intermediate_size=32768,
|
96 |
+
num_hidden_layers=64,
|
97 |
+
num_attention_heads=48,
|
98 |
+
num_key_value_heads=8,
|
99 |
+
hidden_act="silu",
|
100 |
+
max_position_embeddings=4096,
|
101 |
+
initializer_range=0.02,
|
102 |
+
rms_norm_eps=1e-5,
|
103 |
+
use_cache=True,
|
104 |
+
pad_token_id=0,
|
105 |
+
bos_token_id=1,
|
106 |
+
eos_token_id=2,
|
107 |
+
tie_word_embeddings=True,
|
108 |
+
rope_theta=1e5,
|
109 |
+
attention_dropout=0.0,
|
110 |
+
num_experts_per_tok=2,
|
111 |
+
num_local_experts=8,
|
112 |
+
output_router_logits=False,
|
113 |
+
router_aux_loss_coef=0.001,
|
114 |
+
output_multiplier_scale=0.5773502691896257,
|
115 |
+
embedding_multiplier_scale=78.38367176906169,
|
116 |
+
attn_output_multiplier=0.08838834764831845,
|
117 |
+
**kwargs,
|
118 |
+
):
|
119 |
+
self.vocab_size = vocab_size
|
120 |
+
self.max_position_embeddings = max_position_embeddings
|
121 |
+
self.hidden_size = hidden_size
|
122 |
+
self.intermediate_size = intermediate_size
|
123 |
+
self.num_hidden_layers = num_hidden_layers
|
124 |
+
self.num_attention_heads = num_attention_heads
|
125 |
+
|
126 |
+
# for backward compatibility
|
127 |
+
if num_key_value_heads is None:
|
128 |
+
num_key_value_heads = num_attention_heads
|
129 |
+
|
130 |
+
self.num_key_value_heads = num_key_value_heads
|
131 |
+
self.hidden_act = hidden_act
|
132 |
+
self.initializer_range = initializer_range
|
133 |
+
self.rms_norm_eps = rms_norm_eps
|
134 |
+
self.use_cache = use_cache
|
135 |
+
self.rope_theta = rope_theta
|
136 |
+
self.attention_dropout = attention_dropout
|
137 |
+
|
138 |
+
self.num_experts_per_tok = num_experts_per_tok
|
139 |
+
self.num_local_experts = num_local_experts
|
140 |
+
self.output_router_logits = output_router_logits
|
141 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
142 |
+
self.output_multiplier_scale = output_multiplier_scale
|
143 |
+
self.embedding_multiplier_scale = embedding_multiplier_scale
|
144 |
+
self.attn_output_multiplier = attn_output_multiplier
|
145 |
+
super().__init__(
|
146 |
+
pad_token_id=pad_token_id,
|
147 |
+
bos_token_id=bos_token_id,
|
148 |
+
eos_token_id=eos_token_id,
|
149 |
+
tie_word_embeddings=tie_word_embeddings,
|
150 |
+
**kwargs,
|
151 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.38.2"
|
7 |
+
}
|
modeling_grok.py
ADDED
@@ -0,0 +1,838 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Modified from https://raw.githubusercontent.com/huggingface/transformers/v4.38.2/src/transformers/models/mixtral/modeling_mixtral.py
|
3 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
6 |
+
# and OPT implementations in this library. It has been modified from its
|
7 |
+
# original forms to accommodate minor architectural differences compared
|
8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
""" PyTorch Grok-1 model."""
|
22 |
+
import inspect
|
23 |
+
import math
|
24 |
+
import warnings
|
25 |
+
from typing import List, Optional, Tuple, Union
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.nn.functional as F
|
29 |
+
import torch.utils.checkpoint
|
30 |
+
from torch import nn
|
31 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
32 |
+
|
33 |
+
from transformers.activations import ACT2FN
|
34 |
+
from transformers.cache_utils import Cache, DynamicCache
|
35 |
+
from transformers.modeling_attn_mask_utils import (
|
36 |
+
_prepare_4d_causal_attention_mask,
|
37 |
+
)
|
38 |
+
from transformers.modeling_outputs import (
|
39 |
+
MoeCausalLMOutputWithPast,
|
40 |
+
MoeModelOutputWithPast,
|
41 |
+
SequenceClassifierOutputWithPast,
|
42 |
+
)
|
43 |
+
from transformers.modeling_utils import PreTrainedModel
|
44 |
+
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
|
45 |
+
from transformers.utils import (
|
46 |
+
add_start_docstrings,
|
47 |
+
add_start_docstrings_to_model_forward,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
52 |
+
from .configuration_grok import GrokConfig
|
53 |
+
|
54 |
+
|
55 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
56 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
57 |
+
if is_torch_fx_available():
|
58 |
+
if not is_torch_greater_or_equal_than_1_13:
|
59 |
+
import torch.fx
|
60 |
+
|
61 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
62 |
+
|
63 |
+
|
64 |
+
logger = logging.get_logger(__name__)
|
65 |
+
|
66 |
+
|
67 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
68 |
+
def _get_unpad_data(attention_mask):
|
69 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
70 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
71 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
72 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
73 |
+
return (
|
74 |
+
indices,
|
75 |
+
cu_seqlens,
|
76 |
+
max_seqlen_in_batch,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Grok
|
81 |
+
class GrokRMSNorm(nn.Module):
|
82 |
+
def __init__(self, hidden_size, eps=1e-6):
|
83 |
+
"""
|
84 |
+
GrokRMSNorm is equivalent to T5LayerNorm
|
85 |
+
"""
|
86 |
+
super().__init__()
|
87 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
88 |
+
self.variance_epsilon = eps
|
89 |
+
|
90 |
+
def forward(self, hidden_states):
|
91 |
+
input_dtype = hidden_states.dtype
|
92 |
+
hidden_states = hidden_states.to(torch.float32)
|
93 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
94 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
95 |
+
return self.weight * hidden_states.to(input_dtype)
|
96 |
+
|
97 |
+
|
98 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Grok
|
99 |
+
class GrokRotaryEmbedding(nn.Module):
|
100 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
101 |
+
super().__init__()
|
102 |
+
|
103 |
+
self.dim = dim
|
104 |
+
self.max_position_embeddings = max_position_embeddings
|
105 |
+
self.base = base
|
106 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
107 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
108 |
+
|
109 |
+
# Build here to make `torch.jit.trace` work.
|
110 |
+
self._set_cos_sin_cache(
|
111 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
112 |
+
)
|
113 |
+
|
114 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
115 |
+
self.max_seq_len_cached = seq_len
|
116 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
117 |
+
|
118 |
+
freqs = torch.outer(t, self.inv_freq)
|
119 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
120 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
121 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
122 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
123 |
+
|
124 |
+
def forward(self, x, seq_len=None):
|
125 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
126 |
+
if seq_len > self.max_seq_len_cached:
|
127 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
128 |
+
|
129 |
+
return (
|
130 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
131 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
132 |
+
)
|
133 |
+
|
134 |
+
|
135 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
136 |
+
def rotate_half(x):
|
137 |
+
"""Rotates half the hidden dims of the input."""
|
138 |
+
x1 = x[..., : x.shape[-1] // 2]
|
139 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
140 |
+
return torch.cat((-x2, x1), dim=-1)
|
141 |
+
|
142 |
+
|
143 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
144 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
145 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
q (`torch.Tensor`): The query tensor.
|
149 |
+
k (`torch.Tensor`): The key tensor.
|
150 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
151 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
152 |
+
position_ids (`torch.Tensor`):
|
153 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
154 |
+
used to pass offsetted position ids when working with a KV-cache.
|
155 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
156 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
157 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
158 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
159 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
160 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
161 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
162 |
+
Returns:
|
163 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
164 |
+
"""
|
165 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
166 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
167 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
168 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
169 |
+
return q_embed, k_embed
|
170 |
+
|
171 |
+
|
172 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
173 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
174 |
+
"""
|
175 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
176 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
177 |
+
"""
|
178 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
179 |
+
if n_rep == 1:
|
180 |
+
return hidden_states
|
181 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
182 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
183 |
+
|
184 |
+
|
185 |
+
class GrokAttention(nn.Module):
|
186 |
+
"""
|
187 |
+
Multi-headed attention from 'Attention Is All You Need' paper.
|
188 |
+
"""
|
189 |
+
|
190 |
+
def __init__(self, config: GrokConfig, layer_idx: Optional[int] = None):
|
191 |
+
super().__init__()
|
192 |
+
self.config = config
|
193 |
+
self.layer_idx = layer_idx
|
194 |
+
if layer_idx is None:
|
195 |
+
logger.warning_once(
|
196 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
197 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
198 |
+
"when creating this class."
|
199 |
+
)
|
200 |
+
|
201 |
+
self.hidden_size = config.hidden_size
|
202 |
+
self.num_heads = config.num_attention_heads
|
203 |
+
self.head_dim = self.hidden_size // self.num_heads
|
204 |
+
self.num_key_value_heads = config.num_key_value_heads
|
205 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
206 |
+
self.max_position_embeddings = config.max_position_embeddings
|
207 |
+
self.rope_theta = config.rope_theta
|
208 |
+
self.attn_output_multiplier = config.attn_output_multiplier
|
209 |
+
self.is_causal = True
|
210 |
+
self.attention_dropout = config.attention_dropout
|
211 |
+
|
212 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
213 |
+
raise ValueError(
|
214 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
215 |
+
f" and `num_heads`: {self.num_heads})."
|
216 |
+
)
|
217 |
+
self.query = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
218 |
+
self.key = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
219 |
+
self.value = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
220 |
+
self.linear = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
221 |
+
|
222 |
+
self.rotary_emb = GrokRotaryEmbedding(
|
223 |
+
self.head_dim,
|
224 |
+
max_position_embeddings=self.max_position_embeddings,
|
225 |
+
base=self.rope_theta,
|
226 |
+
)
|
227 |
+
|
228 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
229 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
230 |
+
|
231 |
+
def forward(
|
232 |
+
self,
|
233 |
+
hidden_states: torch.Tensor,
|
234 |
+
attention_mask: Optional[torch.Tensor] = None,
|
235 |
+
position_ids: Optional[torch.LongTensor] = None,
|
236 |
+
past_key_value: Optional[Cache] = None,
|
237 |
+
output_attentions: bool = False,
|
238 |
+
use_cache: bool = False,
|
239 |
+
**kwargs,
|
240 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
241 |
+
if "padding_mask" in kwargs:
|
242 |
+
warnings.warn(
|
243 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
244 |
+
)
|
245 |
+
bsz, q_len, _ = hidden_states.size()
|
246 |
+
|
247 |
+
query_states = self.query(hidden_states)
|
248 |
+
key_states = self.key(hidden_states)
|
249 |
+
value_states = self.value(hidden_states)
|
250 |
+
|
251 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
252 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
253 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
254 |
+
|
255 |
+
kv_seq_len = key_states.shape[-2]
|
256 |
+
if past_key_value is not None:
|
257 |
+
if self.layer_idx is None:
|
258 |
+
raise ValueError(
|
259 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
260 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
261 |
+
"with a layer index."
|
262 |
+
)
|
263 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
264 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
265 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
266 |
+
|
267 |
+
if past_key_value is not None:
|
268 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
269 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
270 |
+
|
271 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
272 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
273 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
274 |
+
|
275 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.attn_output_multiplier
|
276 |
+
attn_logits = 30 * torch.tanh(attn_weights / 30)
|
277 |
+
|
278 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
279 |
+
raise ValueError(
|
280 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
281 |
+
f" {attn_weights.size()}"
|
282 |
+
)
|
283 |
+
|
284 |
+
if attention_mask is not None:
|
285 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
286 |
+
raise ValueError(
|
287 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
288 |
+
)
|
289 |
+
|
290 |
+
attn_weights = attn_weights + attention_mask
|
291 |
+
|
292 |
+
# upcast attention to fp32
|
293 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
294 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
295 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
296 |
+
|
297 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
298 |
+
raise ValueError(
|
299 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
300 |
+
f" {attn_output.size()}"
|
301 |
+
)
|
302 |
+
|
303 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
304 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
305 |
+
|
306 |
+
attn_output = self.linear(attn_output)
|
307 |
+
|
308 |
+
if not output_attentions:
|
309 |
+
attn_weights = None
|
310 |
+
|
311 |
+
return attn_output, attn_weights, past_key_value
|
312 |
+
|
313 |
+
|
314 |
+
class GrokBlockSparseTop2MLP(nn.Module):
|
315 |
+
def __init__(self, config: GrokConfig):
|
316 |
+
super().__init__()
|
317 |
+
self.ffn_dim = config.intermediate_size
|
318 |
+
self.hidden_dim = config.hidden_size
|
319 |
+
|
320 |
+
self.linear_v = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
321 |
+
self.linear_1 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
322 |
+
self.linear = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
323 |
+
|
324 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
325 |
+
|
326 |
+
def forward(self, hidden_states):
|
327 |
+
current_hidden_states = self.act_fn(self.linear(hidden_states)) * self.linear_v(hidden_states)
|
328 |
+
current_hidden_states = self.linear_1(current_hidden_states)
|
329 |
+
return current_hidden_states
|
330 |
+
|
331 |
+
|
332 |
+
class GrokDecoderLayer(nn.Module):
|
333 |
+
def __init__(self, config: GrokConfig, layer_idx: int):
|
334 |
+
super().__init__()
|
335 |
+
self.hidden_size = config.hidden_size
|
336 |
+
self.ffn_dim = config.intermediate_size
|
337 |
+
self.num_experts = config.num_local_experts
|
338 |
+
self.top_k = config.num_experts_per_tok
|
339 |
+
|
340 |
+
self.multi_head_attention = GrokAttention(config, layer_idx)
|
341 |
+
self.router = nn.Linear(self.hidden_size, self.num_experts, bias=False)
|
342 |
+
self.moe = nn.ModuleList([GrokBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
|
343 |
+
|
344 |
+
self.rms_norm = GrokRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
345 |
+
self.rms_norm_1 = GrokRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
346 |
+
self.rms_norm_2 = GrokRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
347 |
+
self.rms_norm_3 = GrokRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
348 |
+
|
349 |
+
def forward(
|
350 |
+
self,
|
351 |
+
hidden_states: torch.Tensor,
|
352 |
+
attention_mask: Optional[torch.Tensor] = None,
|
353 |
+
position_ids: Optional[torch.LongTensor] = None,
|
354 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
355 |
+
output_attentions: Optional[bool] = False,
|
356 |
+
output_router_logits: Optional[bool] = False,
|
357 |
+
use_cache: Optional[bool] = False,
|
358 |
+
**kwargs,
|
359 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
360 |
+
if "padding_mask" in kwargs:
|
361 |
+
warnings.warn(
|
362 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
363 |
+
)
|
364 |
+
"""
|
365 |
+
Args:
|
366 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
367 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
368 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
369 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
370 |
+
output_attentions (`bool`, *optional*):
|
371 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
372 |
+
returned tensors for more detail.
|
373 |
+
output_router_logits (`bool`, *optional*):
|
374 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
375 |
+
should not be returned during inference.
|
376 |
+
use_cache (`bool`, *optional*):
|
377 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
378 |
+
(see `past_key_values`).
|
379 |
+
"""
|
380 |
+
|
381 |
+
residual = hidden_states
|
382 |
+
|
383 |
+
hidden_states = self.rms_norm(hidden_states)
|
384 |
+
|
385 |
+
# Self Attention
|
386 |
+
hidden_states, self_attn_weights, present_key_value = self.multi_head_attention(
|
387 |
+
hidden_states=hidden_states,
|
388 |
+
attention_mask=attention_mask,
|
389 |
+
position_ids=position_ids,
|
390 |
+
past_key_value=past_key_value,
|
391 |
+
output_attentions=output_attentions,
|
392 |
+
use_cache=use_cache,
|
393 |
+
)
|
394 |
+
hidden_states = residual + self.rms_norm_1(hidden_states)
|
395 |
+
|
396 |
+
# Fully Connected
|
397 |
+
residual = hidden_states
|
398 |
+
hidden_states = self.rms_norm_2(hidden_states)
|
399 |
+
|
400 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
401 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
402 |
+
# router_logits: (batch * sequence_length, n_experts)
|
403 |
+
router_logits = self.router(hidden_states)
|
404 |
+
|
405 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
406 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
407 |
+
# we cast back to the input dtype
|
408 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
409 |
+
|
410 |
+
final_hidden_states = torch.zeros(
|
411 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
412 |
+
)
|
413 |
+
|
414 |
+
# One hot encode the selected experts to create an expert mask
|
415 |
+
# this will be used to easily index which expert is going to be sollicitated
|
416 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
417 |
+
|
418 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
419 |
+
for expert_idx in range(self.num_experts):
|
420 |
+
expert_layer = self.moe[expert_idx]
|
421 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
422 |
+
|
423 |
+
if top_x.shape[0] == 0:
|
424 |
+
continue
|
425 |
+
|
426 |
+
# in torch it is faster to index using lists than torch tensors
|
427 |
+
top_x_list = top_x.tolist()
|
428 |
+
idx_list = idx.tolist()
|
429 |
+
|
430 |
+
# Index the correct hidden states and compute the expert hidden state for
|
431 |
+
# the current expert. We need to make sure to multiply the output hidden
|
432 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
433 |
+
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
|
434 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
|
435 |
+
|
436 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
437 |
+
# the `top_x` tensor here.
|
438 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
439 |
+
hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
440 |
+
|
441 |
+
hidden_states = residual + self.rms_norm_3(hidden_states)
|
442 |
+
|
443 |
+
outputs = (hidden_states,)
|
444 |
+
|
445 |
+
if output_attentions:
|
446 |
+
outputs += (self_attn_weights,)
|
447 |
+
|
448 |
+
if use_cache:
|
449 |
+
outputs += (present_key_value,)
|
450 |
+
|
451 |
+
if output_router_logits:
|
452 |
+
outputs += (router_logits,)
|
453 |
+
|
454 |
+
return outputs
|
455 |
+
|
456 |
+
|
457 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Grok
|
458 |
+
class GrokPreTrainedModel(PreTrainedModel):
|
459 |
+
config_class = GrokConfig
|
460 |
+
base_model_prefix = "transformer"
|
461 |
+
supports_gradient_checkpointing = True
|
462 |
+
_no_split_modules = ["GrokDecoderLayer"]
|
463 |
+
_skip_keys_device_placement = "past_key_values"
|
464 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.*."]
|
465 |
+
_supports_flash_attn_2 = False
|
466 |
+
_supports_sdpa = False
|
467 |
+
|
468 |
+
def _init_weights(self, module):
|
469 |
+
pass
|
470 |
+
|
471 |
+
|
472 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralModel with Mistral->Grok
|
473 |
+
class GrokModel(GrokPreTrainedModel):
|
474 |
+
"""
|
475 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GrokDecoderLayer`]
|
476 |
+
|
477 |
+
Args:
|
478 |
+
config: GrokConfig
|
479 |
+
"""
|
480 |
+
|
481 |
+
def __init__(self, config: GrokConfig):
|
482 |
+
super().__init__(config)
|
483 |
+
self.padding_idx = config.pad_token_id
|
484 |
+
self.vocab_size = config.vocab_size
|
485 |
+
self.embedding_multiplier_scale = config.embedding_multiplier_scale
|
486 |
+
|
487 |
+
self.in_out_embed = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
488 |
+
self.decoder_layer = nn.ModuleList(
|
489 |
+
[GrokDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
490 |
+
)
|
491 |
+
self.rms_norm = GrokRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
492 |
+
|
493 |
+
self.gradient_checkpointing = False
|
494 |
+
# Initialize weights and apply final processing
|
495 |
+
self.post_init()
|
496 |
+
|
497 |
+
def get_input_embeddings(self):
|
498 |
+
return self.in_out_embed
|
499 |
+
|
500 |
+
def set_input_embeddings(self, value):
|
501 |
+
self.in_out_embed = value
|
502 |
+
|
503 |
+
# Ignore copy
|
504 |
+
def forward(
|
505 |
+
self,
|
506 |
+
input_ids: torch.LongTensor = None,
|
507 |
+
attention_mask: Optional[torch.Tensor] = None,
|
508 |
+
position_ids: Optional[torch.LongTensor] = None,
|
509 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
510 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
511 |
+
use_cache: Optional[bool] = None,
|
512 |
+
output_attentions: Optional[bool] = None,
|
513 |
+
output_hidden_states: Optional[bool] = None,
|
514 |
+
output_router_logits: Optional[bool] = None,
|
515 |
+
return_dict: Optional[bool] = None,
|
516 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
517 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
518 |
+
output_router_logits = (
|
519 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
520 |
+
)
|
521 |
+
output_hidden_states = (
|
522 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
523 |
+
)
|
524 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
525 |
+
|
526 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
527 |
+
|
528 |
+
# retrieve input_ids and inputs_embeds
|
529 |
+
if input_ids is not None and inputs_embeds is not None:
|
530 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
531 |
+
elif input_ids is not None:
|
532 |
+
batch_size, seq_length = input_ids.shape
|
533 |
+
elif inputs_embeds is not None:
|
534 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
535 |
+
else:
|
536 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
537 |
+
|
538 |
+
past_key_values_length = 0
|
539 |
+
|
540 |
+
if self.gradient_checkpointing and self.training:
|
541 |
+
if use_cache:
|
542 |
+
logger.warning_once(
|
543 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
544 |
+
)
|
545 |
+
use_cache = False
|
546 |
+
|
547 |
+
if use_cache:
|
548 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
549 |
+
if use_legacy_cache:
|
550 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
551 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
552 |
+
|
553 |
+
if position_ids is None:
|
554 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
555 |
+
position_ids = torch.arange(
|
556 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
557 |
+
)
|
558 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
559 |
+
else:
|
560 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
561 |
+
|
562 |
+
if inputs_embeds is None:
|
563 |
+
inputs_embeds = self.in_out_embed(input_ids)
|
564 |
+
|
565 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
566 |
+
attention_mask,
|
567 |
+
(batch_size, seq_length),
|
568 |
+
inputs_embeds,
|
569 |
+
past_key_values_length,
|
570 |
+
)
|
571 |
+
|
572 |
+
hidden_states = inputs_embeds
|
573 |
+
hidden_states *= self.embedding_multiplier_scale
|
574 |
+
|
575 |
+
# decoder layers
|
576 |
+
all_hidden_states = () if output_hidden_states else None
|
577 |
+
all_self_attns = () if output_attentions else None
|
578 |
+
all_router_logits = () if output_router_logits else None
|
579 |
+
next_decoder_cache = None
|
580 |
+
|
581 |
+
for decoder_layer in self.decoder_layer:
|
582 |
+
if output_hidden_states:
|
583 |
+
all_hidden_states += (hidden_states,)
|
584 |
+
|
585 |
+
if self.gradient_checkpointing and self.training:
|
586 |
+
layer_outputs = self._gradient_checkpointing_func(
|
587 |
+
decoder_layer.__call__,
|
588 |
+
hidden_states,
|
589 |
+
attention_mask,
|
590 |
+
position_ids,
|
591 |
+
past_key_values,
|
592 |
+
output_attentions,
|
593 |
+
output_router_logits,
|
594 |
+
use_cache,
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
layer_outputs = decoder_layer(
|
598 |
+
hidden_states,
|
599 |
+
attention_mask=attention_mask,
|
600 |
+
position_ids=position_ids,
|
601 |
+
past_key_value=past_key_values,
|
602 |
+
output_attentions=output_attentions,
|
603 |
+
output_router_logits=output_router_logits,
|
604 |
+
use_cache=use_cache,
|
605 |
+
)
|
606 |
+
|
607 |
+
hidden_states = layer_outputs[0]
|
608 |
+
|
609 |
+
if use_cache:
|
610 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
611 |
+
|
612 |
+
if output_attentions:
|
613 |
+
all_self_attns += (layer_outputs[1],)
|
614 |
+
|
615 |
+
if output_router_logits:
|
616 |
+
all_router_logits += (layer_outputs[-1],)
|
617 |
+
|
618 |
+
hidden_states = self.rms_norm(hidden_states)
|
619 |
+
|
620 |
+
# add hidden states from the last decoder layer
|
621 |
+
if output_hidden_states:
|
622 |
+
all_hidden_states += (hidden_states,)
|
623 |
+
|
624 |
+
next_cache = None
|
625 |
+
if use_cache:
|
626 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
627 |
+
|
628 |
+
if not return_dict:
|
629 |
+
return tuple(
|
630 |
+
v
|
631 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
632 |
+
if v is not None
|
633 |
+
)
|
634 |
+
return MoeModelOutputWithPast(
|
635 |
+
last_hidden_state=hidden_states,
|
636 |
+
past_key_values=next_cache,
|
637 |
+
hidden_states=all_hidden_states,
|
638 |
+
attentions=all_self_attns,
|
639 |
+
router_logits=all_router_logits,
|
640 |
+
)
|
641 |
+
|
642 |
+
|
643 |
+
class GrokForCausalLM(GrokPreTrainedModel):
|
644 |
+
_tied_weights_keys = ["lm_head.weight"]
|
645 |
+
|
646 |
+
def __init__(self, config):
|
647 |
+
super().__init__(config)
|
648 |
+
self.transformer = GrokModel(config)
|
649 |
+
self.vocab_size = config.vocab_size
|
650 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
651 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
652 |
+
self.num_experts = config.num_local_experts
|
653 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
654 |
+
self.output_multiplier_scale = config.output_multiplier_scale
|
655 |
+
# Initialize weights and apply final processing
|
656 |
+
self.post_init()
|
657 |
+
|
658 |
+
def get_input_embeddings(self):
|
659 |
+
return self.transformer.in_out_embed
|
660 |
+
|
661 |
+
def set_input_embeddings(self, value):
|
662 |
+
self.transformer.in_out_embed = value
|
663 |
+
|
664 |
+
def get_output_embeddings(self):
|
665 |
+
return self.lm_head
|
666 |
+
|
667 |
+
def set_output_embeddings(self, new_embeddings):
|
668 |
+
self.lm_head = new_embeddings
|
669 |
+
|
670 |
+
def set_decoder(self, decoder):
|
671 |
+
self.transformer = decoder
|
672 |
+
|
673 |
+
def get_decoder(self):
|
674 |
+
return self.transformer
|
675 |
+
|
676 |
+
def _tie_weights(self):
|
677 |
+
self._tie_or_clone_weights(self.lm_head, self.get_input_embeddings())
|
678 |
+
|
679 |
+
# Ignore copy
|
680 |
+
def forward(
|
681 |
+
self,
|
682 |
+
input_ids: torch.LongTensor = None,
|
683 |
+
attention_mask: Optional[torch.Tensor] = None,
|
684 |
+
position_ids: Optional[torch.LongTensor] = None,
|
685 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
686 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
687 |
+
labels: Optional[torch.LongTensor] = None,
|
688 |
+
use_cache: Optional[bool] = None,
|
689 |
+
output_attentions: Optional[bool] = None,
|
690 |
+
output_hidden_states: Optional[bool] = None,
|
691 |
+
output_router_logits: Optional[bool] = None,
|
692 |
+
return_dict: Optional[bool] = None,
|
693 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
694 |
+
r"""
|
695 |
+
Args:
|
696 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
697 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
698 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
699 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
700 |
+
|
701 |
+
Returns:
|
702 |
+
|
703 |
+
"""
|
704 |
+
|
705 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
706 |
+
output_router_logits = (
|
707 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
708 |
+
)
|
709 |
+
|
710 |
+
output_hidden_states = (
|
711 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
712 |
+
)
|
713 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
714 |
+
|
715 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
716 |
+
outputs = self.transformer(
|
717 |
+
input_ids=input_ids,
|
718 |
+
attention_mask=attention_mask,
|
719 |
+
position_ids=position_ids,
|
720 |
+
past_key_values=past_key_values,
|
721 |
+
inputs_embeds=inputs_embeds,
|
722 |
+
use_cache=use_cache,
|
723 |
+
output_attentions=output_attentions,
|
724 |
+
output_hidden_states=output_hidden_states,
|
725 |
+
output_router_logits=output_router_logits,
|
726 |
+
return_dict=return_dict,
|
727 |
+
)
|
728 |
+
|
729 |
+
hidden_states = outputs[0]
|
730 |
+
logits = self.lm_head(hidden_states)
|
731 |
+
logits = logits * self.output_multiplier_scale
|
732 |
+
logits = logits.float()
|
733 |
+
|
734 |
+
loss = None
|
735 |
+
if labels is not None:
|
736 |
+
# Shift so that tokens < n predict n
|
737 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
738 |
+
shift_labels = labels[..., 1:].contiguous()
|
739 |
+
# Flatten the tokens
|
740 |
+
loss_fct = CrossEntropyLoss()
|
741 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
742 |
+
shift_labels = shift_labels.view(-1)
|
743 |
+
# Enable model parallelism
|
744 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
745 |
+
loss = loss_fct(shift_logits, shift_labels)
|
746 |
+
|
747 |
+
aux_loss = None
|
748 |
+
if output_router_logits:
|
749 |
+
aux_loss = load_balancing_loss_func(
|
750 |
+
outputs.router_logits if return_dict else outputs[-1],
|
751 |
+
self.num_experts,
|
752 |
+
self.num_experts_per_tok,
|
753 |
+
attention_mask,
|
754 |
+
)
|
755 |
+
if labels is not None:
|
756 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
757 |
+
|
758 |
+
if not return_dict:
|
759 |
+
output = (logits,) + outputs[1:]
|
760 |
+
if output_router_logits:
|
761 |
+
output = (aux_loss,) + output
|
762 |
+
return (loss,) + output if loss is not None else output
|
763 |
+
|
764 |
+
return MoeCausalLMOutputWithPast(
|
765 |
+
loss=loss,
|
766 |
+
aux_loss=aux_loss,
|
767 |
+
logits=logits,
|
768 |
+
past_key_values=outputs.past_key_values,
|
769 |
+
hidden_states=outputs.hidden_states,
|
770 |
+
attentions=outputs.attentions,
|
771 |
+
router_logits=outputs.router_logits,
|
772 |
+
)
|
773 |
+
|
774 |
+
def prepare_inputs_for_generation(
|
775 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
776 |
+
):
|
777 |
+
# Omit tokens covered by past_key_values
|
778 |
+
if past_key_values is not None:
|
779 |
+
if isinstance(past_key_values, Cache):
|
780 |
+
cache_length = past_key_values.get_seq_length()
|
781 |
+
past_length = past_key_values.seen_tokens
|
782 |
+
max_cache_length = past_key_values.get_max_length()
|
783 |
+
else:
|
784 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
785 |
+
max_cache_length = None
|
786 |
+
|
787 |
+
# Keep only the unprocessed tokens:
|
788 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
789 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
790 |
+
# input)
|
791 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
792 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
793 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
794 |
+
# input_ids based on the past_length.
|
795 |
+
elif past_length < input_ids.shape[1]:
|
796 |
+
input_ids = input_ids[:, past_length:]
|
797 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
798 |
+
|
799 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
800 |
+
if (
|
801 |
+
max_cache_length is not None
|
802 |
+
and attention_mask is not None
|
803 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
804 |
+
):
|
805 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
806 |
+
|
807 |
+
position_ids = kwargs.get("position_ids", None)
|
808 |
+
if attention_mask is not None and position_ids is None:
|
809 |
+
# create position_ids on the fly for batch generation
|
810 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
811 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
812 |
+
if past_key_values:
|
813 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
814 |
+
|
815 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
816 |
+
if inputs_embeds is not None and past_key_values is None:
|
817 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
818 |
+
else:
|
819 |
+
model_inputs = {"input_ids": input_ids}
|
820 |
+
|
821 |
+
model_inputs.update(
|
822 |
+
{
|
823 |
+
"position_ids": position_ids,
|
824 |
+
"past_key_values": past_key_values,
|
825 |
+
"use_cache": kwargs.get("use_cache"),
|
826 |
+
"attention_mask": attention_mask,
|
827 |
+
}
|
828 |
+
)
|
829 |
+
return model_inputs
|
830 |
+
|
831 |
+
@staticmethod
|
832 |
+
def _reorder_cache(past_key_values, beam_idx):
|
833 |
+
reordered_past = ()
|
834 |
+
for layer_past in past_key_values:
|
835 |
+
reordered_past += (
|
836 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
837 |
+
)
|
838 |
+
return reordered_past
|
pytorch_model-00001-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49bf50ef3d70afd8e7d199223f8472bc7296f2407ec2f43809ca62276ebaa9a9
|
3 |
+
size 24688084712
|
pytorch_model-00002-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd2e170b63a6532af4f1e7cde4fb51c34bd810aaa0ebbf33345f36f1d08fe9ac
|
3 |
+
size 35962479774
|
pytorch_model-00003-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abb2c6f340f4d0f122c92479f0c2e9324d8f415af1bed4a645e6a374dd7693c3
|
3 |
+
size 32917463282
|
pytorch_model-00004-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9fdff65e71dc305f23181d18ea28b35c5b740f3d624a6d7e92495ccb7cb7a07
|
3 |
+
size 35962479902
|
pytorch_model-00005-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88ec608b37942f333a7274017d4d7ef47e8c420ec3d1c251a0002e08da59a852
|
3 |
+
size 32917463410
|
pytorch_model-00006-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52ad50ece14037cc7d7165d720b02c19619e45d354ff1f46b6b568975106e1a2
|
3 |
+
size 35962479902
|
pytorch_model-00007-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15b5b209f1c94aed54d67b5bccd67be3696c042ce8af4d04317a834aa70c9feb
|
3 |
+
size 32917463410
|
pytorch_model-00008-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a78713c58d353f9835ac0913f80e45c57aa34a93813bba937e39ac37ed09c46
|
3 |
+
size 35962479902
|
pytorch_model-00009-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccaa848a8f0f1245019b69e8bf883f51d3a36ba9f251813cd48c28fca597b1c1
|
3 |
+
size 32917463410
|
pytorch_model-00010-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e11fc345ffdf8cb429deeca6ad79ebbf77a4684e845e6857a4003235c6e074e
|
3 |
+
size 35962479902
|
pytorch_model-00011-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d180e294abda6722fe27332a1d7311f6256c490db667ce8041345fd912f06e2
|
3 |
+
size 32917463410
|
pytorch_model-00012-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aaaeeece29933f8ed8e3bd2ba431f80ee692f525b0a33ff9fbc9e4e319c354d4
|
3 |
+
size 35962479902
|
pytorch_model-00013-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dd78618c0245d6388b13a88eba6577b958a10cd88342a060c6ca9ad559c0feb
|
3 |
+
size 32917463410
|
pytorch_model-00014-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a0c17526baf9136881fd3438bf347e527bcdbb6c014bc25e2fea8d621ee85a6
|
3 |
+
size 35962479902
|
pytorch_model-00015-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af1b44d316af3cb0d66e4e2f3703e0956a70b77b0f1754cea611aea499ec25a9
|
3 |
+
size 32917463410
|
pytorch_model-00016-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3082fac8e8f9a2d0271b1a88ce1812b6ef41ff40cdfca7e4d9ce16d0241e36b1
|
3 |
+
size 35962479902
|
pytorch_model-00017-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:931d80d3cc5157b219ccaaa3c5b6ab5c3996300162cc6f6cf27780f2f0de7262
|
3 |
+
size 32917463410
|
pytorch_model-00018-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74d3dfe9067c0185982e8a6fcf91612da6e118782eb92849452289af1bc75d06
|
3 |
+
size 35962479902
|
pytorch_model-00019-of-00019.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adf12c09aae1a83384d945c440524cd8e2e3ce4dffb83bad3f96857a8a55a770
|
3 |
+
size 19679996468
|
pytorch_model.bin.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c69d7cbad192fa2c9d14e2a77fbfdc11597c68907b043ddb0260e3d28eddd7f
|
3 |
+
size 2229219
|
tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": null,
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false
|
42 |
+
}
|