v2ray commited on
Commit
9ec2bd8
1 Parent(s): f8680d0
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +0 -35
  2. README.md +0 -8
  3. __init__.py +0 -2
  4. config.json +0 -37
  5. configuration_grok.py +0 -151
  6. generation_config.json +0 -7
  7. model-00001-of-00019.safetensors +0 -3
  8. model-00002-of-00019.safetensors +0 -3
  9. model-00003-of-00019.safetensors +0 -3
  10. model-00004-of-00019.safetensors +0 -3
  11. model-00005-of-00019.safetensors +0 -3
  12. model-00006-of-00019.safetensors +0 -3
  13. model-00007-of-00019.safetensors +0 -3
  14. model-00008-of-00019.safetensors +0 -3
  15. model-00009-of-00019.safetensors +0 -3
  16. model-00010-of-00019.safetensors +0 -3
  17. model-00011-of-00019.safetensors +0 -3
  18. model-00012-of-00019.safetensors +0 -3
  19. model-00013-of-00019.safetensors +0 -3
  20. model-00014-of-00019.safetensors +0 -3
  21. model-00015-of-00019.safetensors +0 -3
  22. model-00016-of-00019.safetensors +0 -3
  23. model-00017-of-00019.safetensors +0 -3
  24. model-00018-of-00019.safetensors +0 -3
  25. model-00019-of-00019.safetensors +0 -3
  26. model.safetensors.index.json +0 -777
  27. modeling_grok.py +0 -838
  28. pytorch_model-00001-of-00019.bin +0 -3
  29. pytorch_model-00002-of-00019.bin +0 -3
  30. pytorch_model-00003-of-00019.bin +0 -3
  31. pytorch_model-00004-of-00019.bin +0 -3
  32. pytorch_model-00005-of-00019.bin +0 -3
  33. pytorch_model-00006-of-00019.bin +0 -3
  34. pytorch_model-00007-of-00019.bin +0 -3
  35. pytorch_model-00008-of-00019.bin +0 -3
  36. pytorch_model-00009-of-00019.bin +0 -3
  37. pytorch_model-00010-of-00019.bin +0 -3
  38. pytorch_model-00011-of-00019.bin +0 -3
  39. pytorch_model-00012-of-00019.bin +0 -3
  40. pytorch_model-00013-of-00019.bin +0 -3
  41. pytorch_model-00014-of-00019.bin +0 -3
  42. pytorch_model-00015-of-00019.bin +0 -3
  43. pytorch_model-00016-of-00019.bin +0 -3
  44. pytorch_model-00017-of-00019.bin +0 -3
  45. pytorch_model-00018-of-00019.bin +0 -3
  46. pytorch_model-00019-of-00019.bin +0 -3
  47. pytorch_model.bin.index.json +0 -0
  48. special_tokens_map.json +0 -23
  49. tokenizer.json +0 -0
  50. tokenizer.model +0 -3
.gitattributes DELETED
@@ -1,35 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,8 +0,0 @@
1
- ---
2
- license: apache-2.0
3
- library_name: transformers
4
- ---
5
-
6
- Unofficial dequantized weight of [grok-1](https://huggingface.co/xai-org/grok-1) in HF Transformers format.
7
-
8
- The weights are converted using the [script here](https://gist.github.com/chu-tianxiang/ec310e15d56949fd0f351cb5f65ee7a1) ran inside the [grok-1 repo](https://github.com/xai-org/grok-1). Since downloading the dequantized weight needs twice as much time, it's recommended to download the original weight and convert on your own.
 
 
 
 
 
 
 
 
 
__init__.py DELETED
@@ -1,2 +0,0 @@
1
- from .configuration_grok import *
2
- from .modeling_grok import *
 
 
 
config.json DELETED
@@ -1,37 +0,0 @@
1
- {
2
- "_name_or_path": "grok",
3
- "architectures": [
4
- "GrokForCausalLM"
5
- ],
6
- "attention_dropout": 0.0,
7
- "attn_output_multiplier": 0.08838834764831845,
8
- "auto_map": {
9
- "AutoConfig": "configuration_grok.GrokConfig",
10
- "AutoModelForCausalLM": "modeling_grok.GrokForCausalLM"
11
- },
12
- "bos_token_id": 1,
13
- "embedding_multiplier_scale": 78.38367176906169,
14
- "eos_token_id": 2,
15
- "hidden_act": "gelu_new",
16
- "hidden_size": 6144,
17
- "initializer_range": 0.02,
18
- "intermediate_size": 32768,
19
- "max_position_embeddings": 8192,
20
- "model_type": "grok",
21
- "num_attention_heads": 48,
22
- "num_experts_per_tok": 2,
23
- "num_hidden_layers": 64,
24
- "num_key_value_heads": 8,
25
- "num_local_experts": 8,
26
- "output_multiplier_scale": 0.5773502691896257,
27
- "output_router_logits": false,
28
- "pad_token_id": 0,
29
- "rms_norm_eps": 1e-05,
30
- "rope_theta": 10000.0,
31
- "router_aux_loss_coef": 0.02,
32
- "sliding_window": null,
33
- "torch_dtype": "bfloat16",
34
- "transformers_version": "4.38.2",
35
- "use_cache": true,
36
- "vocab_size": 131072
37
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configuration_grok.py DELETED
@@ -1,151 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 Mixtral AI and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """ Grok model configuration"""
16
-
17
- from transformers.configuration_utils import PretrainedConfig
18
- from transformers.utils import logging
19
-
20
-
21
- logger = logging.get_logger(__name__)
22
-
23
-
24
- class GrokConfig(PretrainedConfig):
25
- r"""
26
- This is the configuration class to store the configuration of a [`GrokModel`].
27
-
28
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
29
- documentation from [`PretrainedConfig`] for more information.
30
-
31
-
32
- Args:
33
- vocab_size (`int`, *optional*, defaults to 32000):
34
- Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
35
- `inputs_ids` passed when calling [`MixtralModel`]
36
- hidden_size (`int`, *optional*, defaults to 4096):
37
- Dimension of the hidden representations.
38
- intermediate_size (`int`, *optional*, defaults to 14336):
39
- Dimension of the MLP representations.
40
- num_hidden_layers (`int`, *optional*, defaults to 32):
41
- Number of hidden layers in the Transformer encoder.
42
- num_attention_heads (`int`, *optional*, defaults to 32):
43
- Number of attention heads for each attention layer in the Transformer encoder.
44
- num_key_value_heads (`int`, *optional*, defaults to 8):
45
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
46
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
47
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
48
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
49
- by meanpooling all the original heads within that group. For more details checkout [this
50
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
51
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
52
- The non-linear activation function (function or string) in the decoder.
53
- max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
54
- The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
55
- allows sequence of up to 4096*32 tokens.
56
- initializer_range (`float`, *optional*, defaults to 0.02):
57
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
- rms_norm_eps (`float`, *optional*, defaults to 1e-05):
59
- The epsilon used by the rms normalization layers.
60
- use_cache (`bool`, *optional*, defaults to `True`):
61
- Whether or not the model should return the last key/values attentions (not used by all models). Only
62
- relevant if `config.is_decoder=True`.
63
- pad_token_id (`int`, *optional*):
64
- The id of the padding token.
65
- bos_token_id (`int`, *optional*, defaults to 1):
66
- The id of the "beginning-of-sequence" token.
67
- eos_token_id (`int`, *optional*, defaults to 2):
68
- The id of the "end-of-sequence" token.
69
- tie_word_embeddings (`bool`, *optional*, defaults to `True`):
70
- Whether the model's input and output word embeddings should be tied.
71
- rope_theta (`float`, *optional*, defaults to 100000.0):
72
- The base period of the RoPE embeddings.
73
- attention_dropout (`float`, *optional*, defaults to 0.0):
74
- The dropout ratio for the attention probabilities.
75
- num_experts_per_tok (`int`, *optional*, defaults to 2):
76
- The number of experts to root per-token, can be also interpreted as the `top-p` routing
77
- parameter
78
- num_local_experts (`int`, *optional*, defaults to 8):
79
- Number of experts per Sparse MLP layer.
80
- output_router_logits (`bool`, *optional*, defaults to `False`):
81
- Whether or not the router logits should be returned by the model. Enabeling this will also
82
- allow the model to output the auxiliary loss. See [here]() for more details
83
- router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
84
- The aux loss factor for the total loss.
85
-
86
- """
87
-
88
- model_type = "grok"
89
- keys_to_ignore_at_inference = ["past_key_values"]
90
-
91
- def __init__(
92
- self,
93
- vocab_size=131072,
94
- hidden_size=6144,
95
- intermediate_size=32768,
96
- num_hidden_layers=64,
97
- num_attention_heads=48,
98
- num_key_value_heads=8,
99
- hidden_act="silu",
100
- max_position_embeddings=4096,
101
- initializer_range=0.02,
102
- rms_norm_eps=1e-5,
103
- use_cache=True,
104
- pad_token_id=0,
105
- bos_token_id=1,
106
- eos_token_id=2,
107
- tie_word_embeddings=True,
108
- rope_theta=1e5,
109
- attention_dropout=0.0,
110
- num_experts_per_tok=2,
111
- num_local_experts=8,
112
- output_router_logits=False,
113
- router_aux_loss_coef=0.001,
114
- output_multiplier_scale=0.5773502691896257,
115
- embedding_multiplier_scale=78.38367176906169,
116
- attn_output_multiplier=0.08838834764831845,
117
- **kwargs,
118
- ):
119
- self.vocab_size = vocab_size
120
- self.max_position_embeddings = max_position_embeddings
121
- self.hidden_size = hidden_size
122
- self.intermediate_size = intermediate_size
123
- self.num_hidden_layers = num_hidden_layers
124
- self.num_attention_heads = num_attention_heads
125
-
126
- # for backward compatibility
127
- if num_key_value_heads is None:
128
- num_key_value_heads = num_attention_heads
129
-
130
- self.num_key_value_heads = num_key_value_heads
131
- self.hidden_act = hidden_act
132
- self.initializer_range = initializer_range
133
- self.rms_norm_eps = rms_norm_eps
134
- self.use_cache = use_cache
135
- self.rope_theta = rope_theta
136
- self.attention_dropout = attention_dropout
137
-
138
- self.num_experts_per_tok = num_experts_per_tok
139
- self.num_local_experts = num_local_experts
140
- self.output_router_logits = output_router_logits
141
- self.router_aux_loss_coef = router_aux_loss_coef
142
- self.output_multiplier_scale = output_multiplier_scale
143
- self.embedding_multiplier_scale = embedding_multiplier_scale
144
- self.attn_output_multiplier = attn_output_multiplier
145
- super().__init__(
146
- pad_token_id=pad_token_id,
147
- bos_token_id=bos_token_id,
148
- eos_token_id=eos_token_id,
149
- tie_word_embeddings=tie_word_embeddings,
150
- **kwargs,
151
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generation_config.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "bos_token_id": 1,
4
- "eos_token_id": 2,
5
- "pad_token_id": 0,
6
- "transformers_version": "4.38.2"
7
- }
 
 
 
 
 
 
 
 
model-00001-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fae4638b4fc0299dcafe947f1cdf76bf7a69d4e9fb69c193f67ab89aa34c376c
3
- size 4958457672
 
 
 
 
model-00002-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:eac30089a1f3cd214a210a67d795a748ff00b12d73cddce7cfb7e8a04cacc2b1
3
- size 4958655552
 
 
 
 
model-00003-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c6d74b4180040b1a209adbf3f695370f465bcaee39e3f11d51096c5d10e202fb
3
- size 4732261544
 
 
 
 
model-00004-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a3058039cb929b9a468fd22d13255e595307e413144b421b793b81ccdab93d58
3
- size 4958655592
 
 
 
 
model-00005-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:28e64f1177eef0b0bc86593fb6dc4458a5b49d0d5ef5d4fafb66b567c2c7287b
3
- size 4732261592
 
 
 
 
model-00006-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c56aef5249666b49c1343228ddbf1279c2ab4422cb98cb53b3e5b0387d27676e
3
- size 4958655600
 
 
 
 
model-00007-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:478526e8598450fd4231dfe84832fb9865eb62c231273349ecbb2593f4b7cf72
3
- size 4732261592
 
 
 
 
model-00008-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0b4648e9c1e92a9d7344fb2e8d2dd4896a4489cc309b64f11f34110db374aa41
3
- size 4958655600
 
 
 
 
model-00009-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d45d38b0ced5ef5f6470f47b4df1d5f74e6482a903bba04fd63f4441eaeb035c
3
- size 4732261592
 
 
 
 
model-00010-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e2a53115b58fa9544a0b0e00696cda3ece771dd77edf5dc0e9c320fcfbf782f5
3
- size 4958655600
 
 
 
 
model-00011-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5e6b630792a33357c2993309479d172d79fedcbe9be540480e3ca582ff65a58
3
- size 4732261592
 
 
 
 
model-00012-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:96b2f0a0c985921a9c15b55f134594812e6e53f76bc91890421d32070d16f048
3
- size 4958655600
 
 
 
 
model-00013-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:96ed70e3f45808ee0ece374045275be2d0d1cee75bab3a3a863e461e5a66c1d7
3
- size 4732261592
 
 
 
 
model-00014-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:bdc9513b9dd70b7974e136f843a7613653b0aeca76ece604995d6d21e93720e8
3
- size 4958655600
 
 
 
 
model-00015-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:51379d67ac3b5525ce49eda9ee30edd2e98d27697b3d888e8b2c9e2d87080510
3
- size 4732261592
 
 
 
 
model-00016-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:bc38dde94a0ec295b7c57d725d3c048502aae2868de10ae96c8d623fb4606722
3
- size 4958655600
 
 
 
 
model-00017-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d55f1848da09769f88fdc1f4933909a29a7d0686b830e4f711d903e46592cf42
3
- size 4732261592
 
 
 
 
model-00018-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:10a6ab4893eb048f142e8900e3e30bbd3c0aaeaa00704dad666c38b3ed0e63f5
3
- size 4958655600
 
 
 
 
model-00019-of-00019.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3b054303f82fc96d8343b969c52174e7d3423fcf3694d0eda6c50ebb9471813c
3
- size 2768858160
 
 
 
 
model.safetensors.index.json DELETED
@@ -1,777 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 90213212160
4
- },
5
- "weight_map": {
6
- "transformer.decoder_layer.0.moe.0.linear.weight": "model-00001-of-00019.safetensors",
7
- "transformer.decoder_layer.0.moe.0.linear_1.weight": "model-00001-of-00019.safetensors",
8
- "transformer.decoder_layer.0.moe.0.linear_v.weight": "model-00001-of-00019.safetensors",
9
- "transformer.decoder_layer.0.multi_head_attention.key.weight": "model-00001-of-00019.safetensors",
10
- "transformer.decoder_layer.0.multi_head_attention.linear.weight": "model-00001-of-00019.safetensors",
11
- "transformer.decoder_layer.0.multi_head_attention.query.weight": "model-00001-of-00019.safetensors",
12
- "transformer.decoder_layer.0.multi_head_attention.value.weight": "model-00001-of-00019.safetensors",
13
- "transformer.decoder_layer.0.rms_norm.weight": "model-00001-of-00019.safetensors",
14
- "transformer.decoder_layer.0.rms_norm_1.weight": "model-00001-of-00019.safetensors",
15
- "transformer.decoder_layer.0.rms_norm_2.weight": "model-00001-of-00019.safetensors",
16
- "transformer.decoder_layer.0.rms_norm_3.weight": "model-00001-of-00019.safetensors",
17
- "transformer.decoder_layer.0.router.weight": "model-00001-of-00019.safetensors",
18
- "transformer.decoder_layer.1.moe.0.linear.weight": "model-00001-of-00019.safetensors",
19
- "transformer.decoder_layer.1.moe.0.linear_1.weight": "model-00001-of-00019.safetensors",
20
- "transformer.decoder_layer.1.moe.0.linear_v.weight": "model-00001-of-00019.safetensors",
21
- "transformer.decoder_layer.1.multi_head_attention.key.weight": "model-00001-of-00019.safetensors",
22
- "transformer.decoder_layer.1.multi_head_attention.linear.weight": "model-00001-of-00019.safetensors",
23
- "transformer.decoder_layer.1.multi_head_attention.query.weight": "model-00001-of-00019.safetensors",
24
- "transformer.decoder_layer.1.multi_head_attention.value.weight": "model-00001-of-00019.safetensors",
25
- "transformer.decoder_layer.1.rms_norm.weight": "model-00001-of-00019.safetensors",
26
- "transformer.decoder_layer.1.rms_norm_1.weight": "model-00001-of-00019.safetensors",
27
- "transformer.decoder_layer.1.rms_norm_2.weight": "model-00001-of-00019.safetensors",
28
- "transformer.decoder_layer.1.rms_norm_3.weight": "model-00001-of-00019.safetensors",
29
- "transformer.decoder_layer.1.router.weight": "model-00001-of-00019.safetensors",
30
- "transformer.decoder_layer.10.moe.0.linear.weight": "model-00004-of-00019.safetensors",
31
- "transformer.decoder_layer.10.moe.0.linear_1.weight": "model-00004-of-00019.safetensors",
32
- "transformer.decoder_layer.10.moe.0.linear_v.weight": "model-00004-of-00019.safetensors",
33
- "transformer.decoder_layer.10.multi_head_attention.key.weight": "model-00004-of-00019.safetensors",
34
- "transformer.decoder_layer.10.multi_head_attention.linear.weight": "model-00004-of-00019.safetensors",
35
- "transformer.decoder_layer.10.multi_head_attention.query.weight": "model-00004-of-00019.safetensors",
36
- "transformer.decoder_layer.10.multi_head_attention.value.weight": "model-00004-of-00019.safetensors",
37
- "transformer.decoder_layer.10.rms_norm.weight": "model-00004-of-00019.safetensors",
38
- "transformer.decoder_layer.10.rms_norm_1.weight": "model-00004-of-00019.safetensors",
39
- "transformer.decoder_layer.10.rms_norm_2.weight": "model-00004-of-00019.safetensors",
40
- "transformer.decoder_layer.10.rms_norm_3.weight": "model-00004-of-00019.safetensors",
41
- "transformer.decoder_layer.10.router.weight": "model-00004-of-00019.safetensors",
42
- "transformer.decoder_layer.11.moe.0.linear.weight": "model-00004-of-00019.safetensors",
43
- "transformer.decoder_layer.11.moe.0.linear_1.weight": "model-00004-of-00019.safetensors",
44
- "transformer.decoder_layer.11.moe.0.linear_v.weight": "model-00004-of-00019.safetensors",
45
- "transformer.decoder_layer.11.multi_head_attention.key.weight": "model-00004-of-00019.safetensors",
46
- "transformer.decoder_layer.11.multi_head_attention.linear.weight": "model-00004-of-00019.safetensors",
47
- "transformer.decoder_layer.11.multi_head_attention.query.weight": "model-00004-of-00019.safetensors",
48
- "transformer.decoder_layer.11.multi_head_attention.value.weight": "model-00004-of-00019.safetensors",
49
- "transformer.decoder_layer.11.rms_norm.weight": "model-00004-of-00019.safetensors",
50
- "transformer.decoder_layer.11.rms_norm_1.weight": "model-00004-of-00019.safetensors",
51
- "transformer.decoder_layer.11.rms_norm_2.weight": "model-00004-of-00019.safetensors",
52
- "transformer.decoder_layer.11.rms_norm_3.weight": "model-00004-of-00019.safetensors",
53
- "transformer.decoder_layer.11.router.weight": "model-00004-of-00019.safetensors",
54
- "transformer.decoder_layer.12.moe.0.linear.weight": "model-00004-of-00019.safetensors",
55
- "transformer.decoder_layer.12.moe.0.linear_1.weight": "model-00004-of-00019.safetensors",
56
- "transformer.decoder_layer.12.moe.0.linear_v.weight": "model-00004-of-00019.safetensors",
57
- "transformer.decoder_layer.12.multi_head_attention.key.weight": "model-00004-of-00019.safetensors",
58
- "transformer.decoder_layer.12.multi_head_attention.linear.weight": "model-00004-of-00019.safetensors",
59
- "transformer.decoder_layer.12.multi_head_attention.query.weight": "model-00004-of-00019.safetensors",
60
- "transformer.decoder_layer.12.multi_head_attention.value.weight": "model-00004-of-00019.safetensors",
61
- "transformer.decoder_layer.12.rms_norm.weight": "model-00004-of-00019.safetensors",
62
- "transformer.decoder_layer.12.rms_norm_1.weight": "model-00004-of-00019.safetensors",
63
- "transformer.decoder_layer.12.rms_norm_2.weight": "model-00004-of-00019.safetensors",
64
- "transformer.decoder_layer.12.rms_norm_3.weight": "model-00004-of-00019.safetensors",
65
- "transformer.decoder_layer.12.router.weight": "model-00004-of-00019.safetensors",
66
- "transformer.decoder_layer.13.moe.0.linear.weight": "model-00005-of-00019.safetensors",
67
- "transformer.decoder_layer.13.moe.0.linear_1.weight": "model-00005-of-00019.safetensors",
68
- "transformer.decoder_layer.13.moe.0.linear_v.weight": "model-00005-of-00019.safetensors",
69
- "transformer.decoder_layer.13.multi_head_attention.key.weight": "model-00005-of-00019.safetensors",
70
- "transformer.decoder_layer.13.multi_head_attention.linear.weight": "model-00005-of-00019.safetensors",
71
- "transformer.decoder_layer.13.multi_head_attention.query.weight": "model-00005-of-00019.safetensors",
72
- "transformer.decoder_layer.13.multi_head_attention.value.weight": "model-00005-of-00019.safetensors",
73
- "transformer.decoder_layer.13.rms_norm.weight": "model-00005-of-00019.safetensors",
74
- "transformer.decoder_layer.13.rms_norm_1.weight": "model-00005-of-00019.safetensors",
75
- "transformer.decoder_layer.13.rms_norm_2.weight": "model-00005-of-00019.safetensors",
76
- "transformer.decoder_layer.13.rms_norm_3.weight": "model-00005-of-00019.safetensors",
77
- "transformer.decoder_layer.13.router.weight": "model-00005-of-00019.safetensors",
78
- "transformer.decoder_layer.14.moe.0.linear.weight": "model-00005-of-00019.safetensors",
79
- "transformer.decoder_layer.14.moe.0.linear_1.weight": "model-00005-of-00019.safetensors",
80
- "transformer.decoder_layer.14.moe.0.linear_v.weight": "model-00005-of-00019.safetensors",
81
- "transformer.decoder_layer.14.multi_head_attention.key.weight": "model-00005-of-00019.safetensors",
82
- "transformer.decoder_layer.14.multi_head_attention.linear.weight": "model-00005-of-00019.safetensors",
83
- "transformer.decoder_layer.14.multi_head_attention.query.weight": "model-00005-of-00019.safetensors",
84
- "transformer.decoder_layer.14.multi_head_attention.value.weight": "model-00005-of-00019.safetensors",
85
- "transformer.decoder_layer.14.rms_norm.weight": "model-00005-of-00019.safetensors",
86
- "transformer.decoder_layer.14.rms_norm_1.weight": "model-00005-of-00019.safetensors",
87
- "transformer.decoder_layer.14.rms_norm_2.weight": "model-00005-of-00019.safetensors",
88
- "transformer.decoder_layer.14.rms_norm_3.weight": "model-00005-of-00019.safetensors",
89
- "transformer.decoder_layer.14.router.weight": "model-00005-of-00019.safetensors",
90
- "transformer.decoder_layer.15.moe.0.linear.weight": "model-00005-of-00019.safetensors",
91
- "transformer.decoder_layer.15.moe.0.linear_1.weight": "model-00005-of-00019.safetensors",
92
- "transformer.decoder_layer.15.moe.0.linear_v.weight": "model-00005-of-00019.safetensors",
93
- "transformer.decoder_layer.15.multi_head_attention.key.weight": "model-00005-of-00019.safetensors",
94
- "transformer.decoder_layer.15.multi_head_attention.linear.weight": "model-00005-of-00019.safetensors",
95
- "transformer.decoder_layer.15.multi_head_attention.query.weight": "model-00005-of-00019.safetensors",
96
- "transformer.decoder_layer.15.multi_head_attention.value.weight": "model-00005-of-00019.safetensors",
97
- "transformer.decoder_layer.15.rms_norm.weight": "model-00005-of-00019.safetensors",
98
- "transformer.decoder_layer.15.rms_norm_1.weight": "model-00005-of-00019.safetensors",
99
- "transformer.decoder_layer.15.rms_norm_2.weight": "model-00005-of-00019.safetensors",
100
- "transformer.decoder_layer.15.rms_norm_3.weight": "model-00005-of-00019.safetensors",
101
- "transformer.decoder_layer.15.router.weight": "model-00005-of-00019.safetensors",
102
- "transformer.decoder_layer.16.moe.0.linear.weight": "model-00006-of-00019.safetensors",
103
- "transformer.decoder_layer.16.moe.0.linear_1.weight": "model-00006-of-00019.safetensors",
104
- "transformer.decoder_layer.16.moe.0.linear_v.weight": "model-00005-of-00019.safetensors",
105
- "transformer.decoder_layer.16.multi_head_attention.key.weight": "model-00005-of-00019.safetensors",
106
- "transformer.decoder_layer.16.multi_head_attention.linear.weight": "model-00005-of-00019.safetensors",
107
- "transformer.decoder_layer.16.multi_head_attention.query.weight": "model-00005-of-00019.safetensors",
108
- "transformer.decoder_layer.16.multi_head_attention.value.weight": "model-00005-of-00019.safetensors",
109
- "transformer.decoder_layer.16.rms_norm.weight": "model-00006-of-00019.safetensors",
110
- "transformer.decoder_layer.16.rms_norm_1.weight": "model-00006-of-00019.safetensors",
111
- "transformer.decoder_layer.16.rms_norm_2.weight": "model-00006-of-00019.safetensors",
112
- "transformer.decoder_layer.16.rms_norm_3.weight": "model-00006-of-00019.safetensors",
113
- "transformer.decoder_layer.16.router.weight": "model-00005-of-00019.safetensors",
114
- "transformer.decoder_layer.17.moe.0.linear.weight": "model-00006-of-00019.safetensors",
115
- "transformer.decoder_layer.17.moe.0.linear_1.weight": "model-00006-of-00019.safetensors",
116
- "transformer.decoder_layer.17.moe.0.linear_v.weight": "model-00006-of-00019.safetensors",
117
- "transformer.decoder_layer.17.multi_head_attention.key.weight": "model-00006-of-00019.safetensors",
118
- "transformer.decoder_layer.17.multi_head_attention.linear.weight": "model-00006-of-00019.safetensors",
119
- "transformer.decoder_layer.17.multi_head_attention.query.weight": "model-00006-of-00019.safetensors",
120
- "transformer.decoder_layer.17.multi_head_attention.value.weight": "model-00006-of-00019.safetensors",
121
- "transformer.decoder_layer.17.rms_norm.weight": "model-00006-of-00019.safetensors",
122
- "transformer.decoder_layer.17.rms_norm_1.weight": "model-00006-of-00019.safetensors",
123
- "transformer.decoder_layer.17.rms_norm_2.weight": "model-00006-of-00019.safetensors",
124
- "transformer.decoder_layer.17.rms_norm_3.weight": "model-00006-of-00019.safetensors",
125
- "transformer.decoder_layer.17.router.weight": "model-00006-of-00019.safetensors",
126
- "transformer.decoder_layer.18.moe.0.linear.weight": "model-00006-of-00019.safetensors",
127
- "transformer.decoder_layer.18.moe.0.linear_1.weight": "model-00006-of-00019.safetensors",
128
- "transformer.decoder_layer.18.moe.0.linear_v.weight": "model-00006-of-00019.safetensors",
129
- "transformer.decoder_layer.18.multi_head_attention.key.weight": "model-00006-of-00019.safetensors",
130
- "transformer.decoder_layer.18.multi_head_attention.linear.weight": "model-00006-of-00019.safetensors",
131
- "transformer.decoder_layer.18.multi_head_attention.query.weight": "model-00006-of-00019.safetensors",
132
- "transformer.decoder_layer.18.multi_head_attention.value.weight": "model-00006-of-00019.safetensors",
133
- "transformer.decoder_layer.18.rms_norm.weight": "model-00006-of-00019.safetensors",
134
- "transformer.decoder_layer.18.rms_norm_1.weight": "model-00006-of-00019.safetensors",
135
- "transformer.decoder_layer.18.rms_norm_2.weight": "model-00006-of-00019.safetensors",
136
- "transformer.decoder_layer.18.rms_norm_3.weight": "model-00006-of-00019.safetensors",
137
- "transformer.decoder_layer.18.router.weight": "model-00006-of-00019.safetensors",
138
- "transformer.decoder_layer.19.moe.0.linear.weight": "model-00006-of-00019.safetensors",
139
- "transformer.decoder_layer.19.moe.0.linear_1.weight": "model-00006-of-00019.safetensors",
140
- "transformer.decoder_layer.19.moe.0.linear_v.weight": "model-00006-of-00019.safetensors",
141
- "transformer.decoder_layer.19.multi_head_attention.key.weight": "model-00006-of-00019.safetensors",
142
- "transformer.decoder_layer.19.multi_head_attention.linear.weight": "model-00006-of-00019.safetensors",
143
- "transformer.decoder_layer.19.multi_head_attention.query.weight": "model-00006-of-00019.safetensors",
144
- "transformer.decoder_layer.19.multi_head_attention.value.weight": "model-00006-of-00019.safetensors",
145
- "transformer.decoder_layer.19.rms_norm.weight": "model-00006-of-00019.safetensors",
146
- "transformer.decoder_layer.19.rms_norm_1.weight": "model-00006-of-00019.safetensors",
147
- "transformer.decoder_layer.19.rms_norm_2.weight": "model-00006-of-00019.safetensors",
148
- "transformer.decoder_layer.19.rms_norm_3.weight": "model-00006-of-00019.safetensors",
149
- "transformer.decoder_layer.19.router.weight": "model-00006-of-00019.safetensors",
150
- "transformer.decoder_layer.2.moe.0.linear.weight": "model-00002-of-00019.safetensors",
151
- "transformer.decoder_layer.2.moe.0.linear_1.weight": "model-00002-of-00019.safetensors",
152
- "transformer.decoder_layer.2.moe.0.linear_v.weight": "model-00001-of-00019.safetensors",
153
- "transformer.decoder_layer.2.multi_head_attention.key.weight": "model-00001-of-00019.safetensors",
154
- "transformer.decoder_layer.2.multi_head_attention.linear.weight": "model-00001-of-00019.safetensors",
155
- "transformer.decoder_layer.2.multi_head_attention.query.weight": "model-00001-of-00019.safetensors",
156
- "transformer.decoder_layer.2.multi_head_attention.value.weight": "model-00001-of-00019.safetensors",
157
- "transformer.decoder_layer.2.rms_norm.weight": "model-00002-of-00019.safetensors",
158
- "transformer.decoder_layer.2.rms_norm_1.weight": "model-00002-of-00019.safetensors",
159
- "transformer.decoder_layer.2.rms_norm_2.weight": "model-00002-of-00019.safetensors",
160
- "transformer.decoder_layer.2.rms_norm_3.weight": "model-00002-of-00019.safetensors",
161
- "transformer.decoder_layer.2.router.weight": "model-00001-of-00019.safetensors",
162
- "transformer.decoder_layer.20.moe.0.linear.weight": "model-00007-of-00019.safetensors",
163
- "transformer.decoder_layer.20.moe.0.linear_1.weight": "model-00007-of-00019.safetensors",
164
- "transformer.decoder_layer.20.moe.0.linear_v.weight": "model-00007-of-00019.safetensors",
165
- "transformer.decoder_layer.20.multi_head_attention.key.weight": "model-00007-of-00019.safetensors",
166
- "transformer.decoder_layer.20.multi_head_attention.linear.weight": "model-00007-of-00019.safetensors",
167
- "transformer.decoder_layer.20.multi_head_attention.query.weight": "model-00007-of-00019.safetensors",
168
- "transformer.decoder_layer.20.multi_head_attention.value.weight": "model-00007-of-00019.safetensors",
169
- "transformer.decoder_layer.20.rms_norm.weight": "model-00007-of-00019.safetensors",
170
- "transformer.decoder_layer.20.rms_norm_1.weight": "model-00007-of-00019.safetensors",
171
- "transformer.decoder_layer.20.rms_norm_2.weight": "model-00007-of-00019.safetensors",
172
- "transformer.decoder_layer.20.rms_norm_3.weight": "model-00007-of-00019.safetensors",
173
- "transformer.decoder_layer.20.router.weight": "model-00007-of-00019.safetensors",
174
- "transformer.decoder_layer.21.moe.0.linear.weight": "model-00007-of-00019.safetensors",
175
- "transformer.decoder_layer.21.moe.0.linear_1.weight": "model-00007-of-00019.safetensors",
176
- "transformer.decoder_layer.21.moe.0.linear_v.weight": "model-00007-of-00019.safetensors",
177
- "transformer.decoder_layer.21.multi_head_attention.key.weight": "model-00007-of-00019.safetensors",
178
- "transformer.decoder_layer.21.multi_head_attention.linear.weight": "model-00007-of-00019.safetensors",
179
- "transformer.decoder_layer.21.multi_head_attention.query.weight": "model-00007-of-00019.safetensors",
180
- "transformer.decoder_layer.21.multi_head_attention.value.weight": "model-00007-of-00019.safetensors",
181
- "transformer.decoder_layer.21.rms_norm.weight": "model-00007-of-00019.safetensors",
182
- "transformer.decoder_layer.21.rms_norm_1.weight": "model-00007-of-00019.safetensors",
183
- "transformer.decoder_layer.21.rms_norm_2.weight": "model-00007-of-00019.safetensors",
184
- "transformer.decoder_layer.21.rms_norm_3.weight": "model-00007-of-00019.safetensors",
185
- "transformer.decoder_layer.21.router.weight": "model-00007-of-00019.safetensors",
186
- "transformer.decoder_layer.22.moe.0.linear.weight": "model-00007-of-00019.safetensors",
187
- "transformer.decoder_layer.22.moe.0.linear_1.weight": "model-00007-of-00019.safetensors",
188
- "transformer.decoder_layer.22.moe.0.linear_v.weight": "model-00007-of-00019.safetensors",
189
- "transformer.decoder_layer.22.multi_head_attention.key.weight": "model-00007-of-00019.safetensors",
190
- "transformer.decoder_layer.22.multi_head_attention.linear.weight": "model-00007-of-00019.safetensors",
191
- "transformer.decoder_layer.22.multi_head_attention.query.weight": "model-00007-of-00019.safetensors",
192
- "transformer.decoder_layer.22.multi_head_attention.value.weight": "model-00007-of-00019.safetensors",
193
- "transformer.decoder_layer.22.rms_norm.weight": "model-00007-of-00019.safetensors",
194
- "transformer.decoder_layer.22.rms_norm_1.weight": "model-00007-of-00019.safetensors",
195
- "transformer.decoder_layer.22.rms_norm_2.weight": "model-00007-of-00019.safetensors",
196
- "transformer.decoder_layer.22.rms_norm_3.weight": "model-00007-of-00019.safetensors",
197
- "transformer.decoder_layer.22.router.weight": "model-00007-of-00019.safetensors",
198
- "transformer.decoder_layer.23.moe.0.linear.weight": "model-00008-of-00019.safetensors",
199
- "transformer.decoder_layer.23.moe.0.linear_1.weight": "model-00008-of-00019.safetensors",
200
- "transformer.decoder_layer.23.moe.0.linear_v.weight": "model-00007-of-00019.safetensors",
201
- "transformer.decoder_layer.23.multi_head_attention.key.weight": "model-00007-of-00019.safetensors",
202
- "transformer.decoder_layer.23.multi_head_attention.linear.weight": "model-00007-of-00019.safetensors",
203
- "transformer.decoder_layer.23.multi_head_attention.query.weight": "model-00007-of-00019.safetensors",
204
- "transformer.decoder_layer.23.multi_head_attention.value.weight": "model-00007-of-00019.safetensors",
205
- "transformer.decoder_layer.23.rms_norm.weight": "model-00008-of-00019.safetensors",
206
- "transformer.decoder_layer.23.rms_norm_1.weight": "model-00008-of-00019.safetensors",
207
- "transformer.decoder_layer.23.rms_norm_2.weight": "model-00008-of-00019.safetensors",
208
- "transformer.decoder_layer.23.rms_norm_3.weight": "model-00008-of-00019.safetensors",
209
- "transformer.decoder_layer.23.router.weight": "model-00007-of-00019.safetensors",
210
- "transformer.decoder_layer.24.moe.0.linear.weight": "model-00008-of-00019.safetensors",
211
- "transformer.decoder_layer.24.moe.0.linear_1.weight": "model-00008-of-00019.safetensors",
212
- "transformer.decoder_layer.24.moe.0.linear_v.weight": "model-00008-of-00019.safetensors",
213
- "transformer.decoder_layer.24.multi_head_attention.key.weight": "model-00008-of-00019.safetensors",
214
- "transformer.decoder_layer.24.multi_head_attention.linear.weight": "model-00008-of-00019.safetensors",
215
- "transformer.decoder_layer.24.multi_head_attention.query.weight": "model-00008-of-00019.safetensors",
216
- "transformer.decoder_layer.24.multi_head_attention.value.weight": "model-00008-of-00019.safetensors",
217
- "transformer.decoder_layer.24.rms_norm.weight": "model-00008-of-00019.safetensors",
218
- "transformer.decoder_layer.24.rms_norm_1.weight": "model-00008-of-00019.safetensors",
219
- "transformer.decoder_layer.24.rms_norm_2.weight": "model-00008-of-00019.safetensors",
220
- "transformer.decoder_layer.24.rms_norm_3.weight": "model-00008-of-00019.safetensors",
221
- "transformer.decoder_layer.24.router.weight": "model-00008-of-00019.safetensors",
222
- "transformer.decoder_layer.25.moe.0.linear.weight": "model-00008-of-00019.safetensors",
223
- "transformer.decoder_layer.25.moe.0.linear_1.weight": "model-00008-of-00019.safetensors",
224
- "transformer.decoder_layer.25.moe.0.linear_v.weight": "model-00008-of-00019.safetensors",
225
- "transformer.decoder_layer.25.multi_head_attention.key.weight": "model-00008-of-00019.safetensors",
226
- "transformer.decoder_layer.25.multi_head_attention.linear.weight": "model-00008-of-00019.safetensors",
227
- "transformer.decoder_layer.25.multi_head_attention.query.weight": "model-00008-of-00019.safetensors",
228
- "transformer.decoder_layer.25.multi_head_attention.value.weight": "model-00008-of-00019.safetensors",
229
- "transformer.decoder_layer.25.rms_norm.weight": "model-00008-of-00019.safetensors",
230
- "transformer.decoder_layer.25.rms_norm_1.weight": "model-00008-of-00019.safetensors",
231
- "transformer.decoder_layer.25.rms_norm_2.weight": "model-00008-of-00019.safetensors",
232
- "transformer.decoder_layer.25.rms_norm_3.weight": "model-00008-of-00019.safetensors",
233
- "transformer.decoder_layer.25.router.weight": "model-00008-of-00019.safetensors",
234
- "transformer.decoder_layer.26.moe.0.linear.weight": "model-00008-of-00019.safetensors",
235
- "transformer.decoder_layer.26.moe.0.linear_1.weight": "model-00008-of-00019.safetensors",
236
- "transformer.decoder_layer.26.moe.0.linear_v.weight": "model-00008-of-00019.safetensors",
237
- "transformer.decoder_layer.26.multi_head_attention.key.weight": "model-00008-of-00019.safetensors",
238
- "transformer.decoder_layer.26.multi_head_attention.linear.weight": "model-00008-of-00019.safetensors",
239
- "transformer.decoder_layer.26.multi_head_attention.query.weight": "model-00008-of-00019.safetensors",
240
- "transformer.decoder_layer.26.multi_head_attention.value.weight": "model-00008-of-00019.safetensors",
241
- "transformer.decoder_layer.26.rms_norm.weight": "model-00008-of-00019.safetensors",
242
- "transformer.decoder_layer.26.rms_norm_1.weight": "model-00008-of-00019.safetensors",
243
- "transformer.decoder_layer.26.rms_norm_2.weight": "model-00008-of-00019.safetensors",
244
- "transformer.decoder_layer.26.rms_norm_3.weight": "model-00008-of-00019.safetensors",
245
- "transformer.decoder_layer.26.router.weight": "model-00008-of-00019.safetensors",
246
- "transformer.decoder_layer.27.moe.0.linear.weight": "model-00009-of-00019.safetensors",
247
- "transformer.decoder_layer.27.moe.0.linear_1.weight": "model-00009-of-00019.safetensors",
248
- "transformer.decoder_layer.27.moe.0.linear_v.weight": "model-00009-of-00019.safetensors",
249
- "transformer.decoder_layer.27.multi_head_attention.key.weight": "model-00009-of-00019.safetensors",
250
- "transformer.decoder_layer.27.multi_head_attention.linear.weight": "model-00009-of-00019.safetensors",
251
- "transformer.decoder_layer.27.multi_head_attention.query.weight": "model-00009-of-00019.safetensors",
252
- "transformer.decoder_layer.27.multi_head_attention.value.weight": "model-00009-of-00019.safetensors",
253
- "transformer.decoder_layer.27.rms_norm.weight": "model-00009-of-00019.safetensors",
254
- "transformer.decoder_layer.27.rms_norm_1.weight": "model-00009-of-00019.safetensors",
255
- "transformer.decoder_layer.27.rms_norm_2.weight": "model-00009-of-00019.safetensors",
256
- "transformer.decoder_layer.27.rms_norm_3.weight": "model-00009-of-00019.safetensors",
257
- "transformer.decoder_layer.27.router.weight": "model-00009-of-00019.safetensors",
258
- "transformer.decoder_layer.28.moe.0.linear.weight": "model-00009-of-00019.safetensors",
259
- "transformer.decoder_layer.28.moe.0.linear_1.weight": "model-00009-of-00019.safetensors",
260
- "transformer.decoder_layer.28.moe.0.linear_v.weight": "model-00009-of-00019.safetensors",
261
- "transformer.decoder_layer.28.multi_head_attention.key.weight": "model-00009-of-00019.safetensors",
262
- "transformer.decoder_layer.28.multi_head_attention.linear.weight": "model-00009-of-00019.safetensors",
263
- "transformer.decoder_layer.28.multi_head_attention.query.weight": "model-00009-of-00019.safetensors",
264
- "transformer.decoder_layer.28.multi_head_attention.value.weight": "model-00009-of-00019.safetensors",
265
- "transformer.decoder_layer.28.rms_norm.weight": "model-00009-of-00019.safetensors",
266
- "transformer.decoder_layer.28.rms_norm_1.weight": "model-00009-of-00019.safetensors",
267
- "transformer.decoder_layer.28.rms_norm_2.weight": "model-00009-of-00019.safetensors",
268
- "transformer.decoder_layer.28.rms_norm_3.weight": "model-00009-of-00019.safetensors",
269
- "transformer.decoder_layer.28.router.weight": "model-00009-of-00019.safetensors",
270
- "transformer.decoder_layer.29.moe.0.linear.weight": "model-00009-of-00019.safetensors",
271
- "transformer.decoder_layer.29.moe.0.linear_1.weight": "model-00009-of-00019.safetensors",
272
- "transformer.decoder_layer.29.moe.0.linear_v.weight": "model-00009-of-00019.safetensors",
273
- "transformer.decoder_layer.29.multi_head_attention.key.weight": "model-00009-of-00019.safetensors",
274
- "transformer.decoder_layer.29.multi_head_attention.linear.weight": "model-00009-of-00019.safetensors",
275
- "transformer.decoder_layer.29.multi_head_attention.query.weight": "model-00009-of-00019.safetensors",
276
- "transformer.decoder_layer.29.multi_head_attention.value.weight": "model-00009-of-00019.safetensors",
277
- "transformer.decoder_layer.29.rms_norm.weight": "model-00009-of-00019.safetensors",
278
- "transformer.decoder_layer.29.rms_norm_1.weight": "model-00009-of-00019.safetensors",
279
- "transformer.decoder_layer.29.rms_norm_2.weight": "model-00009-of-00019.safetensors",
280
- "transformer.decoder_layer.29.rms_norm_3.weight": "model-00009-of-00019.safetensors",
281
- "transformer.decoder_layer.29.router.weight": "model-00009-of-00019.safetensors",
282
- "transformer.decoder_layer.3.moe.0.linear.weight": "model-00002-of-00019.safetensors",
283
- "transformer.decoder_layer.3.moe.0.linear_1.weight": "model-00002-of-00019.safetensors",
284
- "transformer.decoder_layer.3.moe.0.linear_v.weight": "model-00002-of-00019.safetensors",
285
- "transformer.decoder_layer.3.multi_head_attention.key.weight": "model-00002-of-00019.safetensors",
286
- "transformer.decoder_layer.3.multi_head_attention.linear.weight": "model-00002-of-00019.safetensors",
287
- "transformer.decoder_layer.3.multi_head_attention.query.weight": "model-00002-of-00019.safetensors",
288
- "transformer.decoder_layer.3.multi_head_attention.value.weight": "model-00002-of-00019.safetensors",
289
- "transformer.decoder_layer.3.rms_norm.weight": "model-00002-of-00019.safetensors",
290
- "transformer.decoder_layer.3.rms_norm_1.weight": "model-00002-of-00019.safetensors",
291
- "transformer.decoder_layer.3.rms_norm_2.weight": "model-00002-of-00019.safetensors",
292
- "transformer.decoder_layer.3.rms_norm_3.weight": "model-00002-of-00019.safetensors",
293
- "transformer.decoder_layer.3.router.weight": "model-00002-of-00019.safetensors",
294
- "transformer.decoder_layer.30.moe.0.linear.weight": "model-00010-of-00019.safetensors",
295
- "transformer.decoder_layer.30.moe.0.linear_1.weight": "model-00010-of-00019.safetensors",
296
- "transformer.decoder_layer.30.moe.0.linear_v.weight": "model-00009-of-00019.safetensors",
297
- "transformer.decoder_layer.30.multi_head_attention.key.weight": "model-00009-of-00019.safetensors",
298
- "transformer.decoder_layer.30.multi_head_attention.linear.weight": "model-00009-of-00019.safetensors",
299
- "transformer.decoder_layer.30.multi_head_attention.query.weight": "model-00009-of-00019.safetensors",
300
- "transformer.decoder_layer.30.multi_head_attention.value.weight": "model-00009-of-00019.safetensors",
301
- "transformer.decoder_layer.30.rms_norm.weight": "model-00010-of-00019.safetensors",
302
- "transformer.decoder_layer.30.rms_norm_1.weight": "model-00010-of-00019.safetensors",
303
- "transformer.decoder_layer.30.rms_norm_2.weight": "model-00010-of-00019.safetensors",
304
- "transformer.decoder_layer.30.rms_norm_3.weight": "model-00010-of-00019.safetensors",
305
- "transformer.decoder_layer.30.router.weight": "model-00009-of-00019.safetensors",
306
- "transformer.decoder_layer.31.moe.0.linear.weight": "model-00010-of-00019.safetensors",
307
- "transformer.decoder_layer.31.moe.0.linear_1.weight": "model-00010-of-00019.safetensors",
308
- "transformer.decoder_layer.31.moe.0.linear_v.weight": "model-00010-of-00019.safetensors",
309
- "transformer.decoder_layer.31.multi_head_attention.key.weight": "model-00010-of-00019.safetensors",
310
- "transformer.decoder_layer.31.multi_head_attention.linear.weight": "model-00010-of-00019.safetensors",
311
- "transformer.decoder_layer.31.multi_head_attention.query.weight": "model-00010-of-00019.safetensors",
312
- "transformer.decoder_layer.31.multi_head_attention.value.weight": "model-00010-of-00019.safetensors",
313
- "transformer.decoder_layer.31.rms_norm.weight": "model-00010-of-00019.safetensors",
314
- "transformer.decoder_layer.31.rms_norm_1.weight": "model-00010-of-00019.safetensors",
315
- "transformer.decoder_layer.31.rms_norm_2.weight": "model-00010-of-00019.safetensors",
316
- "transformer.decoder_layer.31.rms_norm_3.weight": "model-00010-of-00019.safetensors",
317
- "transformer.decoder_layer.31.router.weight": "model-00010-of-00019.safetensors",
318
- "transformer.decoder_layer.32.moe.0.linear.weight": "model-00010-of-00019.safetensors",
319
- "transformer.decoder_layer.32.moe.0.linear_1.weight": "model-00010-of-00019.safetensors",
320
- "transformer.decoder_layer.32.moe.0.linear_v.weight": "model-00010-of-00019.safetensors",
321
- "transformer.decoder_layer.32.multi_head_attention.key.weight": "model-00010-of-00019.safetensors",
322
- "transformer.decoder_layer.32.multi_head_attention.linear.weight": "model-00010-of-00019.safetensors",
323
- "transformer.decoder_layer.32.multi_head_attention.query.weight": "model-00010-of-00019.safetensors",
324
- "transformer.decoder_layer.32.multi_head_attention.value.weight": "model-00010-of-00019.safetensors",
325
- "transformer.decoder_layer.32.rms_norm.weight": "model-00010-of-00019.safetensors",
326
- "transformer.decoder_layer.32.rms_norm_1.weight": "model-00010-of-00019.safetensors",
327
- "transformer.decoder_layer.32.rms_norm_2.weight": "model-00010-of-00019.safetensors",
328
- "transformer.decoder_layer.32.rms_norm_3.weight": "model-00010-of-00019.safetensors",
329
- "transformer.decoder_layer.32.router.weight": "model-00010-of-00019.safetensors",
330
- "transformer.decoder_layer.33.moe.0.linear.weight": "model-00010-of-00019.safetensors",
331
- "transformer.decoder_layer.33.moe.0.linear_1.weight": "model-00010-of-00019.safetensors",
332
- "transformer.decoder_layer.33.moe.0.linear_v.weight": "model-00010-of-00019.safetensors",
333
- "transformer.decoder_layer.33.multi_head_attention.key.weight": "model-00010-of-00019.safetensors",
334
- "transformer.decoder_layer.33.multi_head_attention.linear.weight": "model-00010-of-00019.safetensors",
335
- "transformer.decoder_layer.33.multi_head_attention.query.weight": "model-00010-of-00019.safetensors",
336
- "transformer.decoder_layer.33.multi_head_attention.value.weight": "model-00010-of-00019.safetensors",
337
- "transformer.decoder_layer.33.rms_norm.weight": "model-00010-of-00019.safetensors",
338
- "transformer.decoder_layer.33.rms_norm_1.weight": "model-00010-of-00019.safetensors",
339
- "transformer.decoder_layer.33.rms_norm_2.weight": "model-00010-of-00019.safetensors",
340
- "transformer.decoder_layer.33.rms_norm_3.weight": "model-00010-of-00019.safetensors",
341
- "transformer.decoder_layer.33.router.weight": "model-00010-of-00019.safetensors",
342
- "transformer.decoder_layer.34.moe.0.linear.weight": "model-00011-of-00019.safetensors",
343
- "transformer.decoder_layer.34.moe.0.linear_1.weight": "model-00011-of-00019.safetensors",
344
- "transformer.decoder_layer.34.moe.0.linear_v.weight": "model-00011-of-00019.safetensors",
345
- "transformer.decoder_layer.34.multi_head_attention.key.weight": "model-00011-of-00019.safetensors",
346
- "transformer.decoder_layer.34.multi_head_attention.linear.weight": "model-00011-of-00019.safetensors",
347
- "transformer.decoder_layer.34.multi_head_attention.query.weight": "model-00011-of-00019.safetensors",
348
- "transformer.decoder_layer.34.multi_head_attention.value.weight": "model-00011-of-00019.safetensors",
349
- "transformer.decoder_layer.34.rms_norm.weight": "model-00011-of-00019.safetensors",
350
- "transformer.decoder_layer.34.rms_norm_1.weight": "model-00011-of-00019.safetensors",
351
- "transformer.decoder_layer.34.rms_norm_2.weight": "model-00011-of-00019.safetensors",
352
- "transformer.decoder_layer.34.rms_norm_3.weight": "model-00011-of-00019.safetensors",
353
- "transformer.decoder_layer.34.router.weight": "model-00011-of-00019.safetensors",
354
- "transformer.decoder_layer.35.moe.0.linear.weight": "model-00011-of-00019.safetensors",
355
- "transformer.decoder_layer.35.moe.0.linear_1.weight": "model-00011-of-00019.safetensors",
356
- "transformer.decoder_layer.35.moe.0.linear_v.weight": "model-00011-of-00019.safetensors",
357
- "transformer.decoder_layer.35.multi_head_attention.key.weight": "model-00011-of-00019.safetensors",
358
- "transformer.decoder_layer.35.multi_head_attention.linear.weight": "model-00011-of-00019.safetensors",
359
- "transformer.decoder_layer.35.multi_head_attention.query.weight": "model-00011-of-00019.safetensors",
360
- "transformer.decoder_layer.35.multi_head_attention.value.weight": "model-00011-of-00019.safetensors",
361
- "transformer.decoder_layer.35.rms_norm.weight": "model-00011-of-00019.safetensors",
362
- "transformer.decoder_layer.35.rms_norm_1.weight": "model-00011-of-00019.safetensors",
363
- "transformer.decoder_layer.35.rms_norm_2.weight": "model-00011-of-00019.safetensors",
364
- "transformer.decoder_layer.35.rms_norm_3.weight": "model-00011-of-00019.safetensors",
365
- "transformer.decoder_layer.35.router.weight": "model-00011-of-00019.safetensors",
366
- "transformer.decoder_layer.36.moe.0.linear.weight": "model-00011-of-00019.safetensors",
367
- "transformer.decoder_layer.36.moe.0.linear_1.weight": "model-00011-of-00019.safetensors",
368
- "transformer.decoder_layer.36.moe.0.linear_v.weight": "model-00011-of-00019.safetensors",
369
- "transformer.decoder_layer.36.multi_head_attention.key.weight": "model-00011-of-00019.safetensors",
370
- "transformer.decoder_layer.36.multi_head_attention.linear.weight": "model-00011-of-00019.safetensors",
371
- "transformer.decoder_layer.36.multi_head_attention.query.weight": "model-00011-of-00019.safetensors",
372
- "transformer.decoder_layer.36.multi_head_attention.value.weight": "model-00011-of-00019.safetensors",
373
- "transformer.decoder_layer.36.rms_norm.weight": "model-00011-of-00019.safetensors",
374
- "transformer.decoder_layer.36.rms_norm_1.weight": "model-00011-of-00019.safetensors",
375
- "transformer.decoder_layer.36.rms_norm_2.weight": "model-00011-of-00019.safetensors",
376
- "transformer.decoder_layer.36.rms_norm_3.weight": "model-00011-of-00019.safetensors",
377
- "transformer.decoder_layer.36.router.weight": "model-00011-of-00019.safetensors",
378
- "transformer.decoder_layer.37.moe.0.linear.weight": "model-00012-of-00019.safetensors",
379
- "transformer.decoder_layer.37.moe.0.linear_1.weight": "model-00012-of-00019.safetensors",
380
- "transformer.decoder_layer.37.moe.0.linear_v.weight": "model-00011-of-00019.safetensors",
381
- "transformer.decoder_layer.37.multi_head_attention.key.weight": "model-00011-of-00019.safetensors",
382
- "transformer.decoder_layer.37.multi_head_attention.linear.weight": "model-00011-of-00019.safetensors",
383
- "transformer.decoder_layer.37.multi_head_attention.query.weight": "model-00011-of-00019.safetensors",
384
- "transformer.decoder_layer.37.multi_head_attention.value.weight": "model-00011-of-00019.safetensors",
385
- "transformer.decoder_layer.37.rms_norm.weight": "model-00012-of-00019.safetensors",
386
- "transformer.decoder_layer.37.rms_norm_1.weight": "model-00012-of-00019.safetensors",
387
- "transformer.decoder_layer.37.rms_norm_2.weight": "model-00012-of-00019.safetensors",
388
- "transformer.decoder_layer.37.rms_norm_3.weight": "model-00012-of-00019.safetensors",
389
- "transformer.decoder_layer.37.router.weight": "model-00011-of-00019.safetensors",
390
- "transformer.decoder_layer.38.moe.0.linear.weight": "model-00012-of-00019.safetensors",
391
- "transformer.decoder_layer.38.moe.0.linear_1.weight": "model-00012-of-00019.safetensors",
392
- "transformer.decoder_layer.38.moe.0.linear_v.weight": "model-00012-of-00019.safetensors",
393
- "transformer.decoder_layer.38.multi_head_attention.key.weight": "model-00012-of-00019.safetensors",
394
- "transformer.decoder_layer.38.multi_head_attention.linear.weight": "model-00012-of-00019.safetensors",
395
- "transformer.decoder_layer.38.multi_head_attention.query.weight": "model-00012-of-00019.safetensors",
396
- "transformer.decoder_layer.38.multi_head_attention.value.weight": "model-00012-of-00019.safetensors",
397
- "transformer.decoder_layer.38.rms_norm.weight": "model-00012-of-00019.safetensors",
398
- "transformer.decoder_layer.38.rms_norm_1.weight": "model-00012-of-00019.safetensors",
399
- "transformer.decoder_layer.38.rms_norm_2.weight": "model-00012-of-00019.safetensors",
400
- "transformer.decoder_layer.38.rms_norm_3.weight": "model-00012-of-00019.safetensors",
401
- "transformer.decoder_layer.38.router.weight": "model-00012-of-00019.safetensors",
402
- "transformer.decoder_layer.39.moe.0.linear.weight": "model-00012-of-00019.safetensors",
403
- "transformer.decoder_layer.39.moe.0.linear_1.weight": "model-00012-of-00019.safetensors",
404
- "transformer.decoder_layer.39.moe.0.linear_v.weight": "model-00012-of-00019.safetensors",
405
- "transformer.decoder_layer.39.multi_head_attention.key.weight": "model-00012-of-00019.safetensors",
406
- "transformer.decoder_layer.39.multi_head_attention.linear.weight": "model-00012-of-00019.safetensors",
407
- "transformer.decoder_layer.39.multi_head_attention.query.weight": "model-00012-of-00019.safetensors",
408
- "transformer.decoder_layer.39.multi_head_attention.value.weight": "model-00012-of-00019.safetensors",
409
- "transformer.decoder_layer.39.rms_norm.weight": "model-00012-of-00019.safetensors",
410
- "transformer.decoder_layer.39.rms_norm_1.weight": "model-00012-of-00019.safetensors",
411
- "transformer.decoder_layer.39.rms_norm_2.weight": "model-00012-of-00019.safetensors",
412
- "transformer.decoder_layer.39.rms_norm_3.weight": "model-00012-of-00019.safetensors",
413
- "transformer.decoder_layer.39.router.weight": "model-00012-of-00019.safetensors",
414
- "transformer.decoder_layer.4.moe.0.linear.weight": "model-00002-of-00019.safetensors",
415
- "transformer.decoder_layer.4.moe.0.linear_1.weight": "model-00002-of-00019.safetensors",
416
- "transformer.decoder_layer.4.moe.0.linear_v.weight": "model-00002-of-00019.safetensors",
417
- "transformer.decoder_layer.4.multi_head_attention.key.weight": "model-00002-of-00019.safetensors",
418
- "transformer.decoder_layer.4.multi_head_attention.linear.weight": "model-00002-of-00019.safetensors",
419
- "transformer.decoder_layer.4.multi_head_attention.query.weight": "model-00002-of-00019.safetensors",
420
- "transformer.decoder_layer.4.multi_head_attention.value.weight": "model-00002-of-00019.safetensors",
421
- "transformer.decoder_layer.4.rms_norm.weight": "model-00002-of-00019.safetensors",
422
- "transformer.decoder_layer.4.rms_norm_1.weight": "model-00002-of-00019.safetensors",
423
- "transformer.decoder_layer.4.rms_norm_2.weight": "model-00002-of-00019.safetensors",
424
- "transformer.decoder_layer.4.rms_norm_3.weight": "model-00002-of-00019.safetensors",
425
- "transformer.decoder_layer.4.router.weight": "model-00002-of-00019.safetensors",
426
- "transformer.decoder_layer.40.moe.0.linear.weight": "model-00012-of-00019.safetensors",
427
- "transformer.decoder_layer.40.moe.0.linear_1.weight": "model-00012-of-00019.safetensors",
428
- "transformer.decoder_layer.40.moe.0.linear_v.weight": "model-00012-of-00019.safetensors",
429
- "transformer.decoder_layer.40.multi_head_attention.key.weight": "model-00012-of-00019.safetensors",
430
- "transformer.decoder_layer.40.multi_head_attention.linear.weight": "model-00012-of-00019.safetensors",
431
- "transformer.decoder_layer.40.multi_head_attention.query.weight": "model-00012-of-00019.safetensors",
432
- "transformer.decoder_layer.40.multi_head_attention.value.weight": "model-00012-of-00019.safetensors",
433
- "transformer.decoder_layer.40.rms_norm.weight": "model-00012-of-00019.safetensors",
434
- "transformer.decoder_layer.40.rms_norm_1.weight": "model-00012-of-00019.safetensors",
435
- "transformer.decoder_layer.40.rms_norm_2.weight": "model-00012-of-00019.safetensors",
436
- "transformer.decoder_layer.40.rms_norm_3.weight": "model-00012-of-00019.safetensors",
437
- "transformer.decoder_layer.40.router.weight": "model-00012-of-00019.safetensors",
438
- "transformer.decoder_layer.41.moe.0.linear.weight": "model-00013-of-00019.safetensors",
439
- "transformer.decoder_layer.41.moe.0.linear_1.weight": "model-00013-of-00019.safetensors",
440
- "transformer.decoder_layer.41.moe.0.linear_v.weight": "model-00013-of-00019.safetensors",
441
- "transformer.decoder_layer.41.multi_head_attention.key.weight": "model-00013-of-00019.safetensors",
442
- "transformer.decoder_layer.41.multi_head_attention.linear.weight": "model-00013-of-00019.safetensors",
443
- "transformer.decoder_layer.41.multi_head_attention.query.weight": "model-00013-of-00019.safetensors",
444
- "transformer.decoder_layer.41.multi_head_attention.value.weight": "model-00013-of-00019.safetensors",
445
- "transformer.decoder_layer.41.rms_norm.weight": "model-00013-of-00019.safetensors",
446
- "transformer.decoder_layer.41.rms_norm_1.weight": "model-00013-of-00019.safetensors",
447
- "transformer.decoder_layer.41.rms_norm_2.weight": "model-00013-of-00019.safetensors",
448
- "transformer.decoder_layer.41.rms_norm_3.weight": "model-00013-of-00019.safetensors",
449
- "transformer.decoder_layer.41.router.weight": "model-00013-of-00019.safetensors",
450
- "transformer.decoder_layer.42.moe.0.linear.weight": "model-00013-of-00019.safetensors",
451
- "transformer.decoder_layer.42.moe.0.linear_1.weight": "model-00013-of-00019.safetensors",
452
- "transformer.decoder_layer.42.moe.0.linear_v.weight": "model-00013-of-00019.safetensors",
453
- "transformer.decoder_layer.42.multi_head_attention.key.weight": "model-00013-of-00019.safetensors",
454
- "transformer.decoder_layer.42.multi_head_attention.linear.weight": "model-00013-of-00019.safetensors",
455
- "transformer.decoder_layer.42.multi_head_attention.query.weight": "model-00013-of-00019.safetensors",
456
- "transformer.decoder_layer.42.multi_head_attention.value.weight": "model-00013-of-00019.safetensors",
457
- "transformer.decoder_layer.42.rms_norm.weight": "model-00013-of-00019.safetensors",
458
- "transformer.decoder_layer.42.rms_norm_1.weight": "model-00013-of-00019.safetensors",
459
- "transformer.decoder_layer.42.rms_norm_2.weight": "model-00013-of-00019.safetensors",
460
- "transformer.decoder_layer.42.rms_norm_3.weight": "model-00013-of-00019.safetensors",
461
- "transformer.decoder_layer.42.router.weight": "model-00013-of-00019.safetensors",
462
- "transformer.decoder_layer.43.moe.0.linear.weight": "model-00013-of-00019.safetensors",
463
- "transformer.decoder_layer.43.moe.0.linear_1.weight": "model-00013-of-00019.safetensors",
464
- "transformer.decoder_layer.43.moe.0.linear_v.weight": "model-00013-of-00019.safetensors",
465
- "transformer.decoder_layer.43.multi_head_attention.key.weight": "model-00013-of-00019.safetensors",
466
- "transformer.decoder_layer.43.multi_head_attention.linear.weight": "model-00013-of-00019.safetensors",
467
- "transformer.decoder_layer.43.multi_head_attention.query.weight": "model-00013-of-00019.safetensors",
468
- "transformer.decoder_layer.43.multi_head_attention.value.weight": "model-00013-of-00019.safetensors",
469
- "transformer.decoder_layer.43.rms_norm.weight": "model-00013-of-00019.safetensors",
470
- "transformer.decoder_layer.43.rms_norm_1.weight": "model-00013-of-00019.safetensors",
471
- "transformer.decoder_layer.43.rms_norm_2.weight": "model-00013-of-00019.safetensors",
472
- "transformer.decoder_layer.43.rms_norm_3.weight": "model-00013-of-00019.safetensors",
473
- "transformer.decoder_layer.43.router.weight": "model-00013-of-00019.safetensors",
474
- "transformer.decoder_layer.44.moe.0.linear.weight": "model-00014-of-00019.safetensors",
475
- "transformer.decoder_layer.44.moe.0.linear_1.weight": "model-00014-of-00019.safetensors",
476
- "transformer.decoder_layer.44.moe.0.linear_v.weight": "model-00013-of-00019.safetensors",
477
- "transformer.decoder_layer.44.multi_head_attention.key.weight": "model-00013-of-00019.safetensors",
478
- "transformer.decoder_layer.44.multi_head_attention.linear.weight": "model-00013-of-00019.safetensors",
479
- "transformer.decoder_layer.44.multi_head_attention.query.weight": "model-00013-of-00019.safetensors",
480
- "transformer.decoder_layer.44.multi_head_attention.value.weight": "model-00013-of-00019.safetensors",
481
- "transformer.decoder_layer.44.rms_norm.weight": "model-00014-of-00019.safetensors",
482
- "transformer.decoder_layer.44.rms_norm_1.weight": "model-00014-of-00019.safetensors",
483
- "transformer.decoder_layer.44.rms_norm_2.weight": "model-00014-of-00019.safetensors",
484
- "transformer.decoder_layer.44.rms_norm_3.weight": "model-00014-of-00019.safetensors",
485
- "transformer.decoder_layer.44.router.weight": "model-00013-of-00019.safetensors",
486
- "transformer.decoder_layer.45.moe.0.linear.weight": "model-00014-of-00019.safetensors",
487
- "transformer.decoder_layer.45.moe.0.linear_1.weight": "model-00014-of-00019.safetensors",
488
- "transformer.decoder_layer.45.moe.0.linear_v.weight": "model-00014-of-00019.safetensors",
489
- "transformer.decoder_layer.45.multi_head_attention.key.weight": "model-00014-of-00019.safetensors",
490
- "transformer.decoder_layer.45.multi_head_attention.linear.weight": "model-00014-of-00019.safetensors",
491
- "transformer.decoder_layer.45.multi_head_attention.query.weight": "model-00014-of-00019.safetensors",
492
- "transformer.decoder_layer.45.multi_head_attention.value.weight": "model-00014-of-00019.safetensors",
493
- "transformer.decoder_layer.45.rms_norm.weight": "model-00014-of-00019.safetensors",
494
- "transformer.decoder_layer.45.rms_norm_1.weight": "model-00014-of-00019.safetensors",
495
- "transformer.decoder_layer.45.rms_norm_2.weight": "model-00014-of-00019.safetensors",
496
- "transformer.decoder_layer.45.rms_norm_3.weight": "model-00014-of-00019.safetensors",
497
- "transformer.decoder_layer.45.router.weight": "model-00014-of-00019.safetensors",
498
- "transformer.decoder_layer.46.moe.0.linear.weight": "model-00014-of-00019.safetensors",
499
- "transformer.decoder_layer.46.moe.0.linear_1.weight": "model-00014-of-00019.safetensors",
500
- "transformer.decoder_layer.46.moe.0.linear_v.weight": "model-00014-of-00019.safetensors",
501
- "transformer.decoder_layer.46.multi_head_attention.key.weight": "model-00014-of-00019.safetensors",
502
- "transformer.decoder_layer.46.multi_head_attention.linear.weight": "model-00014-of-00019.safetensors",
503
- "transformer.decoder_layer.46.multi_head_attention.query.weight": "model-00014-of-00019.safetensors",
504
- "transformer.decoder_layer.46.multi_head_attention.value.weight": "model-00014-of-00019.safetensors",
505
- "transformer.decoder_layer.46.rms_norm.weight": "model-00014-of-00019.safetensors",
506
- "transformer.decoder_layer.46.rms_norm_1.weight": "model-00014-of-00019.safetensors",
507
- "transformer.decoder_layer.46.rms_norm_2.weight": "model-00014-of-00019.safetensors",
508
- "transformer.decoder_layer.46.rms_norm_3.weight": "model-00014-of-00019.safetensors",
509
- "transformer.decoder_layer.46.router.weight": "model-00014-of-00019.safetensors",
510
- "transformer.decoder_layer.47.moe.0.linear.weight": "model-00014-of-00019.safetensors",
511
- "transformer.decoder_layer.47.moe.0.linear_1.weight": "model-00014-of-00019.safetensors",
512
- "transformer.decoder_layer.47.moe.0.linear_v.weight": "model-00014-of-00019.safetensors",
513
- "transformer.decoder_layer.47.multi_head_attention.key.weight": "model-00014-of-00019.safetensors",
514
- "transformer.decoder_layer.47.multi_head_attention.linear.weight": "model-00014-of-00019.safetensors",
515
- "transformer.decoder_layer.47.multi_head_attention.query.weight": "model-00014-of-00019.safetensors",
516
- "transformer.decoder_layer.47.multi_head_attention.value.weight": "model-00014-of-00019.safetensors",
517
- "transformer.decoder_layer.47.rms_norm.weight": "model-00014-of-00019.safetensors",
518
- "transformer.decoder_layer.47.rms_norm_1.weight": "model-00014-of-00019.safetensors",
519
- "transformer.decoder_layer.47.rms_norm_2.weight": "model-00014-of-00019.safetensors",
520
- "transformer.decoder_layer.47.rms_norm_3.weight": "model-00014-of-00019.safetensors",
521
- "transformer.decoder_layer.47.router.weight": "model-00014-of-00019.safetensors",
522
- "transformer.decoder_layer.48.moe.0.linear.weight": "model-00015-of-00019.safetensors",
523
- "transformer.decoder_layer.48.moe.0.linear_1.weight": "model-00015-of-00019.safetensors",
524
- "transformer.decoder_layer.48.moe.0.linear_v.weight": "model-00015-of-00019.safetensors",
525
- "transformer.decoder_layer.48.multi_head_attention.key.weight": "model-00015-of-00019.safetensors",
526
- "transformer.decoder_layer.48.multi_head_attention.linear.weight": "model-00015-of-00019.safetensors",
527
- "transformer.decoder_layer.48.multi_head_attention.query.weight": "model-00015-of-00019.safetensors",
528
- "transformer.decoder_layer.48.multi_head_attention.value.weight": "model-00015-of-00019.safetensors",
529
- "transformer.decoder_layer.48.rms_norm.weight": "model-00015-of-00019.safetensors",
530
- "transformer.decoder_layer.48.rms_norm_1.weight": "model-00015-of-00019.safetensors",
531
- "transformer.decoder_layer.48.rms_norm_2.weight": "model-00015-of-00019.safetensors",
532
- "transformer.decoder_layer.48.rms_norm_3.weight": "model-00015-of-00019.safetensors",
533
- "transformer.decoder_layer.48.router.weight": "model-00015-of-00019.safetensors",
534
- "transformer.decoder_layer.49.moe.0.linear.weight": "model-00015-of-00019.safetensors",
535
- "transformer.decoder_layer.49.moe.0.linear_1.weight": "model-00015-of-00019.safetensors",
536
- "transformer.decoder_layer.49.moe.0.linear_v.weight": "model-00015-of-00019.safetensors",
537
- "transformer.decoder_layer.49.multi_head_attention.key.weight": "model-00015-of-00019.safetensors",
538
- "transformer.decoder_layer.49.multi_head_attention.linear.weight": "model-00015-of-00019.safetensors",
539
- "transformer.decoder_layer.49.multi_head_attention.query.weight": "model-00015-of-00019.safetensors",
540
- "transformer.decoder_layer.49.multi_head_attention.value.weight": "model-00015-of-00019.safetensors",
541
- "transformer.decoder_layer.49.rms_norm.weight": "model-00015-of-00019.safetensors",
542
- "transformer.decoder_layer.49.rms_norm_1.weight": "model-00015-of-00019.safetensors",
543
- "transformer.decoder_layer.49.rms_norm_2.weight": "model-00015-of-00019.safetensors",
544
- "transformer.decoder_layer.49.rms_norm_3.weight": "model-00015-of-00019.safetensors",
545
- "transformer.decoder_layer.49.router.weight": "model-00015-of-00019.safetensors",
546
- "transformer.decoder_layer.5.moe.0.linear.weight": "model-00002-of-00019.safetensors",
547
- "transformer.decoder_layer.5.moe.0.linear_1.weight": "model-00002-of-00019.safetensors",
548
- "transformer.decoder_layer.5.moe.0.linear_v.weight": "model-00002-of-00019.safetensors",
549
- "transformer.decoder_layer.5.multi_head_attention.key.weight": "model-00002-of-00019.safetensors",
550
- "transformer.decoder_layer.5.multi_head_attention.linear.weight": "model-00002-of-00019.safetensors",
551
- "transformer.decoder_layer.5.multi_head_attention.query.weight": "model-00002-of-00019.safetensors",
552
- "transformer.decoder_layer.5.multi_head_attention.value.weight": "model-00002-of-00019.safetensors",
553
- "transformer.decoder_layer.5.rms_norm.weight": "model-00002-of-00019.safetensors",
554
- "transformer.decoder_layer.5.rms_norm_1.weight": "model-00002-of-00019.safetensors",
555
- "transformer.decoder_layer.5.rms_norm_2.weight": "model-00002-of-00019.safetensors",
556
- "transformer.decoder_layer.5.rms_norm_3.weight": "model-00002-of-00019.safetensors",
557
- "transformer.decoder_layer.5.router.weight": "model-00002-of-00019.safetensors",
558
- "transformer.decoder_layer.50.moe.0.linear.weight": "model-00015-of-00019.safetensors",
559
- "transformer.decoder_layer.50.moe.0.linear_1.weight": "model-00015-of-00019.safetensors",
560
- "transformer.decoder_layer.50.moe.0.linear_v.weight": "model-00015-of-00019.safetensors",
561
- "transformer.decoder_layer.50.multi_head_attention.key.weight": "model-00015-of-00019.safetensors",
562
- "transformer.decoder_layer.50.multi_head_attention.linear.weight": "model-00015-of-00019.safetensors",
563
- "transformer.decoder_layer.50.multi_head_attention.query.weight": "model-00015-of-00019.safetensors",
564
- "transformer.decoder_layer.50.multi_head_attention.value.weight": "model-00015-of-00019.safetensors",
565
- "transformer.decoder_layer.50.rms_norm.weight": "model-00015-of-00019.safetensors",
566
- "transformer.decoder_layer.50.rms_norm_1.weight": "model-00015-of-00019.safetensors",
567
- "transformer.decoder_layer.50.rms_norm_2.weight": "model-00015-of-00019.safetensors",
568
- "transformer.decoder_layer.50.rms_norm_3.weight": "model-00015-of-00019.safetensors",
569
- "transformer.decoder_layer.50.router.weight": "model-00015-of-00019.safetensors",
570
- "transformer.decoder_layer.51.moe.0.linear.weight": "model-00016-of-00019.safetensors",
571
- "transformer.decoder_layer.51.moe.0.linear_1.weight": "model-00016-of-00019.safetensors",
572
- "transformer.decoder_layer.51.moe.0.linear_v.weight": "model-00015-of-00019.safetensors",
573
- "transformer.decoder_layer.51.multi_head_attention.key.weight": "model-00015-of-00019.safetensors",
574
- "transformer.decoder_layer.51.multi_head_attention.linear.weight": "model-00015-of-00019.safetensors",
575
- "transformer.decoder_layer.51.multi_head_attention.query.weight": "model-00015-of-00019.safetensors",
576
- "transformer.decoder_layer.51.multi_head_attention.value.weight": "model-00015-of-00019.safetensors",
577
- "transformer.decoder_layer.51.rms_norm.weight": "model-00016-of-00019.safetensors",
578
- "transformer.decoder_layer.51.rms_norm_1.weight": "model-00016-of-00019.safetensors",
579
- "transformer.decoder_layer.51.rms_norm_2.weight": "model-00016-of-00019.safetensors",
580
- "transformer.decoder_layer.51.rms_norm_3.weight": "model-00016-of-00019.safetensors",
581
- "transformer.decoder_layer.51.router.weight": "model-00015-of-00019.safetensors",
582
- "transformer.decoder_layer.52.moe.0.linear.weight": "model-00016-of-00019.safetensors",
583
- "transformer.decoder_layer.52.moe.0.linear_1.weight": "model-00016-of-00019.safetensors",
584
- "transformer.decoder_layer.52.moe.0.linear_v.weight": "model-00016-of-00019.safetensors",
585
- "transformer.decoder_layer.52.multi_head_attention.key.weight": "model-00016-of-00019.safetensors",
586
- "transformer.decoder_layer.52.multi_head_attention.linear.weight": "model-00016-of-00019.safetensors",
587
- "transformer.decoder_layer.52.multi_head_attention.query.weight": "model-00016-of-00019.safetensors",
588
- "transformer.decoder_layer.52.multi_head_attention.value.weight": "model-00016-of-00019.safetensors",
589
- "transformer.decoder_layer.52.rms_norm.weight": "model-00016-of-00019.safetensors",
590
- "transformer.decoder_layer.52.rms_norm_1.weight": "model-00016-of-00019.safetensors",
591
- "transformer.decoder_layer.52.rms_norm_2.weight": "model-00016-of-00019.safetensors",
592
- "transformer.decoder_layer.52.rms_norm_3.weight": "model-00016-of-00019.safetensors",
593
- "transformer.decoder_layer.52.router.weight": "model-00016-of-00019.safetensors",
594
- "transformer.decoder_layer.53.moe.0.linear.weight": "model-00016-of-00019.safetensors",
595
- "transformer.decoder_layer.53.moe.0.linear_1.weight": "model-00016-of-00019.safetensors",
596
- "transformer.decoder_layer.53.moe.0.linear_v.weight": "model-00016-of-00019.safetensors",
597
- "transformer.decoder_layer.53.multi_head_attention.key.weight": "model-00016-of-00019.safetensors",
598
- "transformer.decoder_layer.53.multi_head_attention.linear.weight": "model-00016-of-00019.safetensors",
599
- "transformer.decoder_layer.53.multi_head_attention.query.weight": "model-00016-of-00019.safetensors",
600
- "transformer.decoder_layer.53.multi_head_attention.value.weight": "model-00016-of-00019.safetensors",
601
- "transformer.decoder_layer.53.rms_norm.weight": "model-00016-of-00019.safetensors",
602
- "transformer.decoder_layer.53.rms_norm_1.weight": "model-00016-of-00019.safetensors",
603
- "transformer.decoder_layer.53.rms_norm_2.weight": "model-00016-of-00019.safetensors",
604
- "transformer.decoder_layer.53.rms_norm_3.weight": "model-00016-of-00019.safetensors",
605
- "transformer.decoder_layer.53.router.weight": "model-00016-of-00019.safetensors",
606
- "transformer.decoder_layer.54.moe.0.linear.weight": "model-00016-of-00019.safetensors",
607
- "transformer.decoder_layer.54.moe.0.linear_1.weight": "model-00016-of-00019.safetensors",
608
- "transformer.decoder_layer.54.moe.0.linear_v.weight": "model-00016-of-00019.safetensors",
609
- "transformer.decoder_layer.54.multi_head_attention.key.weight": "model-00016-of-00019.safetensors",
610
- "transformer.decoder_layer.54.multi_head_attention.linear.weight": "model-00016-of-00019.safetensors",
611
- "transformer.decoder_layer.54.multi_head_attention.query.weight": "model-00016-of-00019.safetensors",
612
- "transformer.decoder_layer.54.multi_head_attention.value.weight": "model-00016-of-00019.safetensors",
613
- "transformer.decoder_layer.54.rms_norm.weight": "model-00016-of-00019.safetensors",
614
- "transformer.decoder_layer.54.rms_norm_1.weight": "model-00016-of-00019.safetensors",
615
- "transformer.decoder_layer.54.rms_norm_2.weight": "model-00016-of-00019.safetensors",
616
- "transformer.decoder_layer.54.rms_norm_3.weight": "model-00016-of-00019.safetensors",
617
- "transformer.decoder_layer.54.router.weight": "model-00016-of-00019.safetensors",
618
- "transformer.decoder_layer.55.moe.0.linear.weight": "model-00017-of-00019.safetensors",
619
- "transformer.decoder_layer.55.moe.0.linear_1.weight": "model-00017-of-00019.safetensors",
620
- "transformer.decoder_layer.55.moe.0.linear_v.weight": "model-00017-of-00019.safetensors",
621
- "transformer.decoder_layer.55.multi_head_attention.key.weight": "model-00017-of-00019.safetensors",
622
- "transformer.decoder_layer.55.multi_head_attention.linear.weight": "model-00017-of-00019.safetensors",
623
- "transformer.decoder_layer.55.multi_head_attention.query.weight": "model-00017-of-00019.safetensors",
624
- "transformer.decoder_layer.55.multi_head_attention.value.weight": "model-00017-of-00019.safetensors",
625
- "transformer.decoder_layer.55.rms_norm.weight": "model-00017-of-00019.safetensors",
626
- "transformer.decoder_layer.55.rms_norm_1.weight": "model-00017-of-00019.safetensors",
627
- "transformer.decoder_layer.55.rms_norm_2.weight": "model-00017-of-00019.safetensors",
628
- "transformer.decoder_layer.55.rms_norm_3.weight": "model-00017-of-00019.safetensors",
629
- "transformer.decoder_layer.55.router.weight": "model-00017-of-00019.safetensors",
630
- "transformer.decoder_layer.56.moe.0.linear.weight": "model-00017-of-00019.safetensors",
631
- "transformer.decoder_layer.56.moe.0.linear_1.weight": "model-00017-of-00019.safetensors",
632
- "transformer.decoder_layer.56.moe.0.linear_v.weight": "model-00017-of-00019.safetensors",
633
- "transformer.decoder_layer.56.multi_head_attention.key.weight": "model-00017-of-00019.safetensors",
634
- "transformer.decoder_layer.56.multi_head_attention.linear.weight": "model-00017-of-00019.safetensors",
635
- "transformer.decoder_layer.56.multi_head_attention.query.weight": "model-00017-of-00019.safetensors",
636
- "transformer.decoder_layer.56.multi_head_attention.value.weight": "model-00017-of-00019.safetensors",
637
- "transformer.decoder_layer.56.rms_norm.weight": "model-00017-of-00019.safetensors",
638
- "transformer.decoder_layer.56.rms_norm_1.weight": "model-00017-of-00019.safetensors",
639
- "transformer.decoder_layer.56.rms_norm_2.weight": "model-00017-of-00019.safetensors",
640
- "transformer.decoder_layer.56.rms_norm_3.weight": "model-00017-of-00019.safetensors",
641
- "transformer.decoder_layer.56.router.weight": "model-00017-of-00019.safetensors",
642
- "transformer.decoder_layer.57.moe.0.linear.weight": "model-00017-of-00019.safetensors",
643
- "transformer.decoder_layer.57.moe.0.linear_1.weight": "model-00017-of-00019.safetensors",
644
- "transformer.decoder_layer.57.moe.0.linear_v.weight": "model-00017-of-00019.safetensors",
645
- "transformer.decoder_layer.57.multi_head_attention.key.weight": "model-00017-of-00019.safetensors",
646
- "transformer.decoder_layer.57.multi_head_attention.linear.weight": "model-00017-of-00019.safetensors",
647
- "transformer.decoder_layer.57.multi_head_attention.query.weight": "model-00017-of-00019.safetensors",
648
- "transformer.decoder_layer.57.multi_head_attention.value.weight": "model-00017-of-00019.safetensors",
649
- "transformer.decoder_layer.57.rms_norm.weight": "model-00017-of-00019.safetensors",
650
- "transformer.decoder_layer.57.rms_norm_1.weight": "model-00017-of-00019.safetensors",
651
- "transformer.decoder_layer.57.rms_norm_2.weight": "model-00017-of-00019.safetensors",
652
- "transformer.decoder_layer.57.rms_norm_3.weight": "model-00017-of-00019.safetensors",
653
- "transformer.decoder_layer.57.router.weight": "model-00017-of-00019.safetensors",
654
- "transformer.decoder_layer.58.moe.0.linear.weight": "model-00018-of-00019.safetensors",
655
- "transformer.decoder_layer.58.moe.0.linear_1.weight": "model-00018-of-00019.safetensors",
656
- "transformer.decoder_layer.58.moe.0.linear_v.weight": "model-00017-of-00019.safetensors",
657
- "transformer.decoder_layer.58.multi_head_attention.key.weight": "model-00017-of-00019.safetensors",
658
- "transformer.decoder_layer.58.multi_head_attention.linear.weight": "model-00017-of-00019.safetensors",
659
- "transformer.decoder_layer.58.multi_head_attention.query.weight": "model-00017-of-00019.safetensors",
660
- "transformer.decoder_layer.58.multi_head_attention.value.weight": "model-00017-of-00019.safetensors",
661
- "transformer.decoder_layer.58.rms_norm.weight": "model-00018-of-00019.safetensors",
662
- "transformer.decoder_layer.58.rms_norm_1.weight": "model-00018-of-00019.safetensors",
663
- "transformer.decoder_layer.58.rms_norm_2.weight": "model-00018-of-00019.safetensors",
664
- "transformer.decoder_layer.58.rms_norm_3.weight": "model-00018-of-00019.safetensors",
665
- "transformer.decoder_layer.58.router.weight": "model-00017-of-00019.safetensors",
666
- "transformer.decoder_layer.59.moe.0.linear.weight": "model-00018-of-00019.safetensors",
667
- "transformer.decoder_layer.59.moe.0.linear_1.weight": "model-00018-of-00019.safetensors",
668
- "transformer.decoder_layer.59.moe.0.linear_v.weight": "model-00018-of-00019.safetensors",
669
- "transformer.decoder_layer.59.multi_head_attention.key.weight": "model-00018-of-00019.safetensors",
670
- "transformer.decoder_layer.59.multi_head_attention.linear.weight": "model-00018-of-00019.safetensors",
671
- "transformer.decoder_layer.59.multi_head_attention.query.weight": "model-00018-of-00019.safetensors",
672
- "transformer.decoder_layer.59.multi_head_attention.value.weight": "model-00018-of-00019.safetensors",
673
- "transformer.decoder_layer.59.rms_norm.weight": "model-00018-of-00019.safetensors",
674
- "transformer.decoder_layer.59.rms_norm_1.weight": "model-00018-of-00019.safetensors",
675
- "transformer.decoder_layer.59.rms_norm_2.weight": "model-00018-of-00019.safetensors",
676
- "transformer.decoder_layer.59.rms_norm_3.weight": "model-00018-of-00019.safetensors",
677
- "transformer.decoder_layer.59.router.weight": "model-00018-of-00019.safetensors",
678
- "transformer.decoder_layer.6.moe.0.linear.weight": "model-00003-of-00019.safetensors",
679
- "transformer.decoder_layer.6.moe.0.linear_1.weight": "model-00003-of-00019.safetensors",
680
- "transformer.decoder_layer.6.moe.0.linear_v.weight": "model-00003-of-00019.safetensors",
681
- "transformer.decoder_layer.6.multi_head_attention.key.weight": "model-00003-of-00019.safetensors",
682
- "transformer.decoder_layer.6.multi_head_attention.linear.weight": "model-00003-of-00019.safetensors",
683
- "transformer.decoder_layer.6.multi_head_attention.query.weight": "model-00003-of-00019.safetensors",
684
- "transformer.decoder_layer.6.multi_head_attention.value.weight": "model-00003-of-00019.safetensors",
685
- "transformer.decoder_layer.6.rms_norm.weight": "model-00003-of-00019.safetensors",
686
- "transformer.decoder_layer.6.rms_norm_1.weight": "model-00003-of-00019.safetensors",
687
- "transformer.decoder_layer.6.rms_norm_2.weight": "model-00003-of-00019.safetensors",
688
- "transformer.decoder_layer.6.rms_norm_3.weight": "model-00003-of-00019.safetensors",
689
- "transformer.decoder_layer.6.router.weight": "model-00003-of-00019.safetensors",
690
- "transformer.decoder_layer.60.moe.0.linear.weight": "model-00018-of-00019.safetensors",
691
- "transformer.decoder_layer.60.moe.0.linear_1.weight": "model-00018-of-00019.safetensors",
692
- "transformer.decoder_layer.60.moe.0.linear_v.weight": "model-00018-of-00019.safetensors",
693
- "transformer.decoder_layer.60.multi_head_attention.key.weight": "model-00018-of-00019.safetensors",
694
- "transformer.decoder_layer.60.multi_head_attention.linear.weight": "model-00018-of-00019.safetensors",
695
- "transformer.decoder_layer.60.multi_head_attention.query.weight": "model-00018-of-00019.safetensors",
696
- "transformer.decoder_layer.60.multi_head_attention.value.weight": "model-00018-of-00019.safetensors",
697
- "transformer.decoder_layer.60.rms_norm.weight": "model-00018-of-00019.safetensors",
698
- "transformer.decoder_layer.60.rms_norm_1.weight": "model-00018-of-00019.safetensors",
699
- "transformer.decoder_layer.60.rms_norm_2.weight": "model-00018-of-00019.safetensors",
700
- "transformer.decoder_layer.60.rms_norm_3.weight": "model-00018-of-00019.safetensors",
701
- "transformer.decoder_layer.60.router.weight": "model-00018-of-00019.safetensors",
702
- "transformer.decoder_layer.61.moe.0.linear.weight": "model-00018-of-00019.safetensors",
703
- "transformer.decoder_layer.61.moe.0.linear_1.weight": "model-00018-of-00019.safetensors",
704
- "transformer.decoder_layer.61.moe.0.linear_v.weight": "model-00018-of-00019.safetensors",
705
- "transformer.decoder_layer.61.multi_head_attention.key.weight": "model-00018-of-00019.safetensors",
706
- "transformer.decoder_layer.61.multi_head_attention.linear.weight": "model-00018-of-00019.safetensors",
707
- "transformer.decoder_layer.61.multi_head_attention.query.weight": "model-00018-of-00019.safetensors",
708
- "transformer.decoder_layer.61.multi_head_attention.value.weight": "model-00018-of-00019.safetensors",
709
- "transformer.decoder_layer.61.rms_norm.weight": "model-00018-of-00019.safetensors",
710
- "transformer.decoder_layer.61.rms_norm_1.weight": "model-00018-of-00019.safetensors",
711
- "transformer.decoder_layer.61.rms_norm_2.weight": "model-00018-of-00019.safetensors",
712
- "transformer.decoder_layer.61.rms_norm_3.weight": "model-00018-of-00019.safetensors",
713
- "transformer.decoder_layer.61.router.weight": "model-00018-of-00019.safetensors",
714
- "transformer.decoder_layer.62.moe.0.linear.weight": "model-00019-of-00019.safetensors",
715
- "transformer.decoder_layer.62.moe.0.linear_1.weight": "model-00019-of-00019.safetensors",
716
- "transformer.decoder_layer.62.moe.0.linear_v.weight": "model-00019-of-00019.safetensors",
717
- "transformer.decoder_layer.62.multi_head_attention.key.weight": "model-00019-of-00019.safetensors",
718
- "transformer.decoder_layer.62.multi_head_attention.linear.weight": "model-00019-of-00019.safetensors",
719
- "transformer.decoder_layer.62.multi_head_attention.query.weight": "model-00019-of-00019.safetensors",
720
- "transformer.decoder_layer.62.multi_head_attention.value.weight": "model-00019-of-00019.safetensors",
721
- "transformer.decoder_layer.62.rms_norm.weight": "model-00019-of-00019.safetensors",
722
- "transformer.decoder_layer.62.rms_norm_1.weight": "model-00019-of-00019.safetensors",
723
- "transformer.decoder_layer.62.rms_norm_2.weight": "model-00019-of-00019.safetensors",
724
- "transformer.decoder_layer.62.rms_norm_3.weight": "model-00019-of-00019.safetensors",
725
- "transformer.decoder_layer.62.router.weight": "model-00019-of-00019.safetensors",
726
- "transformer.decoder_layer.63.moe.0.linear.weight": "model-00019-of-00019.safetensors",
727
- "transformer.decoder_layer.63.moe.0.linear_1.weight": "model-00019-of-00019.safetensors",
728
- "transformer.decoder_layer.63.moe.0.linear_v.weight": "model-00019-of-00019.safetensors",
729
- "transformer.decoder_layer.63.multi_head_attention.key.weight": "model-00019-of-00019.safetensors",
730
- "transformer.decoder_layer.63.multi_head_attention.linear.weight": "model-00019-of-00019.safetensors",
731
- "transformer.decoder_layer.63.multi_head_attention.query.weight": "model-00019-of-00019.safetensors",
732
- "transformer.decoder_layer.63.multi_head_attention.value.weight": "model-00019-of-00019.safetensors",
733
- "transformer.decoder_layer.63.rms_norm.weight": "model-00019-of-00019.safetensors",
734
- "transformer.decoder_layer.63.rms_norm_1.weight": "model-00019-of-00019.safetensors",
735
- "transformer.decoder_layer.63.rms_norm_2.weight": "model-00019-of-00019.safetensors",
736
- "transformer.decoder_layer.63.rms_norm_3.weight": "model-00019-of-00019.safetensors",
737
- "transformer.decoder_layer.63.router.weight": "model-00019-of-00019.safetensors",
738
- "transformer.decoder_layer.7.moe.0.linear.weight": "model-00003-of-00019.safetensors",
739
- "transformer.decoder_layer.7.moe.0.linear_1.weight": "model-00003-of-00019.safetensors",
740
- "transformer.decoder_layer.7.moe.0.linear_v.weight": "model-00003-of-00019.safetensors",
741
- "transformer.decoder_layer.7.multi_head_attention.key.weight": "model-00003-of-00019.safetensors",
742
- "transformer.decoder_layer.7.multi_head_attention.linear.weight": "model-00003-of-00019.safetensors",
743
- "transformer.decoder_layer.7.multi_head_attention.query.weight": "model-00003-of-00019.safetensors",
744
- "transformer.decoder_layer.7.multi_head_attention.value.weight": "model-00003-of-00019.safetensors",
745
- "transformer.decoder_layer.7.rms_norm.weight": "model-00003-of-00019.safetensors",
746
- "transformer.decoder_layer.7.rms_norm_1.weight": "model-00003-of-00019.safetensors",
747
- "transformer.decoder_layer.7.rms_norm_2.weight": "model-00003-of-00019.safetensors",
748
- "transformer.decoder_layer.7.rms_norm_3.weight": "model-00003-of-00019.safetensors",
749
- "transformer.decoder_layer.7.router.weight": "model-00003-of-00019.safetensors",
750
- "transformer.decoder_layer.8.moe.0.linear.weight": "model-00003-of-00019.safetensors",
751
- "transformer.decoder_layer.8.moe.0.linear_1.weight": "model-00003-of-00019.safetensors",
752
- "transformer.decoder_layer.8.moe.0.linear_v.weight": "model-00003-of-00019.safetensors",
753
- "transformer.decoder_layer.8.multi_head_attention.key.weight": "model-00003-of-00019.safetensors",
754
- "transformer.decoder_layer.8.multi_head_attention.linear.weight": "model-00003-of-00019.safetensors",
755
- "transformer.decoder_layer.8.multi_head_attention.query.weight": "model-00003-of-00019.safetensors",
756
- "transformer.decoder_layer.8.multi_head_attention.value.weight": "model-00003-of-00019.safetensors",
757
- "transformer.decoder_layer.8.rms_norm.weight": "model-00003-of-00019.safetensors",
758
- "transformer.decoder_layer.8.rms_norm_1.weight": "model-00003-of-00019.safetensors",
759
- "transformer.decoder_layer.8.rms_norm_2.weight": "model-00003-of-00019.safetensors",
760
- "transformer.decoder_layer.8.rms_norm_3.weight": "model-00003-of-00019.safetensors",
761
- "transformer.decoder_layer.8.router.weight": "model-00003-of-00019.safetensors",
762
- "transformer.decoder_layer.9.moe.0.linear.weight": "model-00004-of-00019.safetensors",
763
- "transformer.decoder_layer.9.moe.0.linear_1.weight": "model-00004-of-00019.safetensors",
764
- "transformer.decoder_layer.9.moe.0.linear_v.weight": "model-00003-of-00019.safetensors",
765
- "transformer.decoder_layer.9.multi_head_attention.key.weight": "model-00003-of-00019.safetensors",
766
- "transformer.decoder_layer.9.multi_head_attention.linear.weight": "model-00003-of-00019.safetensors",
767
- "transformer.decoder_layer.9.multi_head_attention.query.weight": "model-00003-of-00019.safetensors",
768
- "transformer.decoder_layer.9.multi_head_attention.value.weight": "model-00003-of-00019.safetensors",
769
- "transformer.decoder_layer.9.rms_norm.weight": "model-00004-of-00019.safetensors",
770
- "transformer.decoder_layer.9.rms_norm_1.weight": "model-00004-of-00019.safetensors",
771
- "transformer.decoder_layer.9.rms_norm_2.weight": "model-00004-of-00019.safetensors",
772
- "transformer.decoder_layer.9.rms_norm_3.weight": "model-00004-of-00019.safetensors",
773
- "transformer.decoder_layer.9.router.weight": "model-00003-of-00019.safetensors",
774
- "transformer.in_out_embed.weight": "model-00001-of-00019.safetensors",
775
- "transformer.rms_norm.weight": "model-00019-of-00019.safetensors"
776
- }
777
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling_grok.py DELETED
@@ -1,838 +0,0 @@
1
- # coding=utf-8
2
- # Modified from https://raw.githubusercontent.com/huggingface/transformers/v4.38.2/src/transformers/models/mixtral/modeling_mixtral.py
3
- # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
4
- #
5
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
- # and OPT implementations in this library. It has been modified from its
7
- # original forms to accommodate minor architectural differences compared
8
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
- #
10
- # Licensed under the Apache License, Version 2.0 (the "License");
11
- # you may not use this file except in compliance with the License.
12
- # You may obtain a copy of the License at
13
- #
14
- # http://www.apache.org/licenses/LICENSE-2.0
15
- #
16
- # Unless required by applicable law or agreed to in writing, software
17
- # distributed under the License is distributed on an "AS IS" BASIS,
18
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
- # See the License for the specific language governing permissions and
20
- # limitations under the License.
21
- """ PyTorch Grok-1 model."""
22
- import inspect
23
- import math
24
- import warnings
25
- from typing import List, Optional, Tuple, Union
26
-
27
- import torch
28
- import torch.nn.functional as F
29
- import torch.utils.checkpoint
30
- from torch import nn
31
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
32
-
33
- from transformers.activations import ACT2FN
34
- from transformers.cache_utils import Cache, DynamicCache
35
- from transformers.modeling_attn_mask_utils import (
36
- _prepare_4d_causal_attention_mask,
37
- )
38
- from transformers.modeling_outputs import (
39
- MoeCausalLMOutputWithPast,
40
- MoeModelOutputWithPast,
41
- SequenceClassifierOutputWithPast,
42
- )
43
- from transformers.modeling_utils import PreTrainedModel
44
- from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
45
- from transformers.utils import (
46
- add_start_docstrings,
47
- add_start_docstrings_to_model_forward,
48
- logging,
49
- replace_return_docstrings,
50
- )
51
- from transformers.utils.import_utils import is_torch_fx_available
52
- from .configuration_grok import GrokConfig
53
-
54
-
55
- # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
56
- # It means that the function will not be traced through and simply appear as a node in the graph.
57
- if is_torch_fx_available():
58
- if not is_torch_greater_or_equal_than_1_13:
59
- import torch.fx
60
-
61
- _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
62
-
63
-
64
- logger = logging.get_logger(__name__)
65
-
66
-
67
- # Copied from transformers.models.llama.modeling_llama._get_unpad_data
68
- def _get_unpad_data(attention_mask):
69
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
70
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
71
- max_seqlen_in_batch = seqlens_in_batch.max().item()
72
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
73
- return (
74
- indices,
75
- cu_seqlens,
76
- max_seqlen_in_batch,
77
- )
78
-
79
-
80
- # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Grok
81
- class GrokRMSNorm(nn.Module):
82
- def __init__(self, hidden_size, eps=1e-6):
83
- """
84
- GrokRMSNorm is equivalent to T5LayerNorm
85
- """
86
- super().__init__()
87
- self.weight = nn.Parameter(torch.ones(hidden_size, dtype=torch.float32))
88
- self.variance_epsilon = eps
89
-
90
- def forward(self, hidden_states):
91
- input_dtype = hidden_states.dtype
92
- hidden_states = hidden_states.to(torch.float32)
93
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
94
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
95
- return (self.weight * hidden_states).to(input_dtype)
96
-
97
-
98
- # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Grok
99
- class GrokRotaryEmbedding(nn.Module):
100
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
101
- super().__init__()
102
-
103
- self.dim = dim
104
- self.max_position_embeddings = max_position_embeddings
105
- self.base = base
106
- inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
107
- self.register_buffer("inv_freq", inv_freq, persistent=False)
108
-
109
- # Build here to make `torch.jit.trace` work.
110
- self._set_cos_sin_cache(
111
- seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
112
- )
113
-
114
- def _set_cos_sin_cache(self, seq_len, device, dtype):
115
- self.max_seq_len_cached = seq_len
116
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
117
-
118
- freqs = torch.outer(t, self.inv_freq)
119
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
120
- emb = torch.cat((freqs, freqs), dim=-1)
121
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
122
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
123
-
124
- def forward(self, x, seq_len=None):
125
- # x: [bs, num_attention_heads, seq_len, head_size]
126
- if seq_len > self.max_seq_len_cached:
127
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
128
-
129
- return (
130
- self.cos_cached[:seq_len].to(dtype=x.dtype),
131
- self.sin_cached[:seq_len].to(dtype=x.dtype),
132
- )
133
-
134
-
135
- # Copied from transformers.models.llama.modeling_llama.rotate_half
136
- def rotate_half(x):
137
- """Rotates half the hidden dims of the input."""
138
- x1 = x[..., : x.shape[-1] // 2]
139
- x2 = x[..., x.shape[-1] // 2 :]
140
- return torch.cat((-x2, x1), dim=-1)
141
-
142
-
143
- # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
144
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
145
- """Applies Rotary Position Embedding to the query and key tensors.
146
-
147
- Args:
148
- q (`torch.Tensor`): The query tensor.
149
- k (`torch.Tensor`): The key tensor.
150
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
151
- sin (`torch.Tensor`): The sine part of the rotary embedding.
152
- position_ids (`torch.Tensor`):
153
- The position indices of the tokens corresponding to the query and key tensors. For example, this can be
154
- used to pass offsetted position ids when working with a KV-cache.
155
- unsqueeze_dim (`int`, *optional*, defaults to 1):
156
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
157
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
158
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
159
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
160
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
161
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
162
- Returns:
163
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
164
- """
165
- cos = cos[position_ids].unsqueeze(unsqueeze_dim)
166
- sin = sin[position_ids].unsqueeze(unsqueeze_dim)
167
- q_embed = (q * cos) + (rotate_half(q) * sin)
168
- k_embed = (k * cos) + (rotate_half(k) * sin)
169
- return q_embed, k_embed
170
-
171
-
172
- # Copied from transformers.models.llama.modeling_llama.repeat_kv
173
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
174
- """
175
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
176
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
177
- """
178
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
179
- if n_rep == 1:
180
- return hidden_states
181
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
182
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
183
-
184
-
185
- class GrokAttention(nn.Module):
186
- """
187
- Multi-headed attention from 'Attention Is All You Need' paper.
188
- """
189
-
190
- def __init__(self, config: GrokConfig, layer_idx: Optional[int] = None):
191
- super().__init__()
192
- self.config = config
193
- self.layer_idx = layer_idx
194
- if layer_idx is None:
195
- logger.warning_once(
196
- f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
197
- "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
198
- "when creating this class."
199
- )
200
-
201
- self.hidden_size = config.hidden_size
202
- self.num_heads = config.num_attention_heads
203
- self.head_dim = self.hidden_size // self.num_heads
204
- self.num_key_value_heads = config.num_key_value_heads
205
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
206
- self.max_position_embeddings = config.max_position_embeddings
207
- self.rope_theta = config.rope_theta
208
- self.attn_output_multiplier = config.attn_output_multiplier
209
- self.is_causal = True
210
- self.attention_dropout = config.attention_dropout
211
-
212
- if (self.head_dim * self.num_heads) != self.hidden_size:
213
- raise ValueError(
214
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
215
- f" and `num_heads`: {self.num_heads})."
216
- )
217
- self.query = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
218
- self.key = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
219
- self.value = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
220
- self.linear = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
221
-
222
- self.rotary_emb = GrokRotaryEmbedding(
223
- self.head_dim,
224
- max_position_embeddings=self.max_position_embeddings,
225
- base=self.rope_theta,
226
- )
227
-
228
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
229
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
230
-
231
- def forward(
232
- self,
233
- hidden_states: torch.Tensor,
234
- attention_mask: Optional[torch.Tensor] = None,
235
- position_ids: Optional[torch.LongTensor] = None,
236
- past_key_value: Optional[Cache] = None,
237
- output_attentions: bool = False,
238
- use_cache: bool = False,
239
- **kwargs,
240
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
241
- if "padding_mask" in kwargs:
242
- warnings.warn(
243
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
244
- )
245
- bsz, q_len, _ = hidden_states.size()
246
-
247
- query_states = self.query(hidden_states)
248
- key_states = self.key(hidden_states)
249
- value_states = self.value(hidden_states)
250
-
251
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
252
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
253
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
254
-
255
- kv_seq_len = key_states.shape[-2]
256
- if past_key_value is not None:
257
- if self.layer_idx is None:
258
- raise ValueError(
259
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
260
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
261
- "with a layer index."
262
- )
263
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
264
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
265
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
266
-
267
- if past_key_value is not None:
268
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
269
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
270
-
271
- # repeat k/v heads if n_kv_heads < n_heads
272
- key_states = repeat_kv(key_states, self.num_key_value_groups)
273
- value_states = repeat_kv(value_states, self.num_key_value_groups)
274
-
275
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.attn_output_multiplier
276
- attn_weights = 30 * torch.tanh(attn_weights / 30)
277
-
278
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
279
- raise ValueError(
280
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
281
- f" {attn_weights.size()}"
282
- )
283
-
284
- if attention_mask is not None:
285
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
286
- raise ValueError(
287
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
288
- )
289
-
290
- attn_weights = attn_weights + attention_mask
291
-
292
- # upcast attention to fp32
293
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
294
- attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
295
- attn_output = torch.matmul(attn_weights, value_states)
296
-
297
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
298
- raise ValueError(
299
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
300
- f" {attn_output.size()}"
301
- )
302
-
303
- attn_output = attn_output.transpose(1, 2).contiguous()
304
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
305
-
306
- attn_output = self.linear(attn_output)
307
-
308
- if not output_attentions:
309
- attn_weights = None
310
-
311
- return attn_output, attn_weights, past_key_value
312
-
313
-
314
- class GrokBlockSparseTop2MLP(nn.Module):
315
- def __init__(self, config: GrokConfig):
316
- super().__init__()
317
- self.ffn_dim = config.intermediate_size
318
- self.hidden_dim = config.hidden_size
319
-
320
- self.linear_v = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
321
- self.linear_1 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
322
- self.linear = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
323
-
324
- self.act_fn = ACT2FN[config.hidden_act]
325
-
326
- def forward(self, hidden_states):
327
- current_hidden_states = self.act_fn(self.linear(hidden_states)) * self.linear_v(hidden_states)
328
- current_hidden_states = self.linear_1(current_hidden_states)
329
- return current_hidden_states
330
-
331
-
332
- class GrokDecoderLayer(nn.Module):
333
- def __init__(self, config: GrokConfig, layer_idx: int):
334
- super().__init__()
335
- self.hidden_size = config.hidden_size
336
- self.ffn_dim = config.intermediate_size
337
- self.num_experts = config.num_local_experts
338
- self.top_k = config.num_experts_per_tok
339
-
340
- self.multi_head_attention = GrokAttention(config, layer_idx)
341
- self.router = nn.Linear(self.hidden_size, self.num_experts, dtype=torch.float32, bias=False)
342
- self.moe = nn.ModuleList([GrokBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
343
-
344
- self.rms_norm = GrokRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
345
- self.rms_norm_1 = GrokRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
346
- self.rms_norm_2 = GrokRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
347
- self.rms_norm_3 = GrokRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
348
-
349
- def forward(
350
- self,
351
- hidden_states: torch.Tensor,
352
- attention_mask: Optional[torch.Tensor] = None,
353
- position_ids: Optional[torch.LongTensor] = None,
354
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
355
- output_attentions: Optional[bool] = False,
356
- output_router_logits: Optional[bool] = False,
357
- use_cache: Optional[bool] = False,
358
- **kwargs,
359
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
360
- if "padding_mask" in kwargs:
361
- warnings.warn(
362
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
363
- )
364
- """
365
- Args:
366
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
367
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
368
- `(batch, sequence_length)` where padding elements are indicated by 0.
369
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
370
- output_attentions (`bool`, *optional*):
371
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
372
- returned tensors for more detail.
373
- output_router_logits (`bool`, *optional*):
374
- Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
375
- should not be returned during inference.
376
- use_cache (`bool`, *optional*):
377
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
378
- (see `past_key_values`).
379
- """
380
-
381
- residual = hidden_states
382
-
383
- hidden_states = self.rms_norm(hidden_states)
384
-
385
- # Self Attention
386
- hidden_states, self_attn_weights, present_key_value = self.multi_head_attention(
387
- hidden_states=hidden_states,
388
- attention_mask=attention_mask,
389
- position_ids=position_ids,
390
- past_key_value=past_key_value,
391
- output_attentions=output_attentions,
392
- use_cache=use_cache,
393
- )
394
- hidden_states = residual + self.rms_norm_1(hidden_states)
395
-
396
- # Fully Connected
397
- residual = hidden_states
398
- hidden_states = self.rms_norm_2(hidden_states)
399
-
400
- batch_size, sequence_length, hidden_dim = hidden_states.shape
401
- hidden_states = hidden_states.view(-1, hidden_dim)
402
- # router_logits: (batch * sequence_length, n_experts)
403
- router_logits = self.router(hidden_states.to(torch.float))
404
-
405
- routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
406
- routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
407
- # we cast back to the input dtype
408
- routing_weights = routing_weights.to(hidden_states.dtype)
409
-
410
- final_hidden_states = torch.zeros(
411
- (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
412
- )
413
-
414
- # One hot encode the selected experts to create an expert mask
415
- # this will be used to easily index which expert is going to be sollicitated
416
- expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
417
-
418
- # Loop over all available experts in the model and perform the computation on each expert
419
- for expert_idx in range(self.num_experts):
420
- expert_layer = self.moe[expert_idx]
421
- idx, top_x = torch.where(expert_mask[expert_idx])
422
-
423
- if top_x.shape[0] == 0:
424
- continue
425
-
426
- # in torch it is faster to index using lists than torch tensors
427
- top_x_list = top_x.tolist()
428
- idx_list = idx.tolist()
429
-
430
- # Index the correct hidden states and compute the expert hidden state for
431
- # the current expert. We need to make sure to multiply the output hidden
432
- # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
433
- current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
434
- current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
435
-
436
- # However `index_add_` only support torch tensors for indexing so we'll use
437
- # the `top_x` tensor here.
438
- final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
439
- hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
440
-
441
- hidden_states = residual + self.rms_norm_3(hidden_states)
442
-
443
- outputs = (hidden_states,)
444
-
445
- if output_attentions:
446
- outputs += (self_attn_weights,)
447
-
448
- if use_cache:
449
- outputs += (present_key_value,)
450
-
451
- if output_router_logits:
452
- outputs += (router_logits,)
453
-
454
- return outputs
455
-
456
-
457
- # Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Grok
458
- class GrokPreTrainedModel(PreTrainedModel):
459
- config_class = GrokConfig
460
- base_model_prefix = "transformer"
461
- supports_gradient_checkpointing = True
462
- _no_split_modules = ["GrokDecoderLayer"]
463
- _skip_keys_device_placement = "past_key_values"
464
- _keys_to_ignore_on_load_missing = [r"lm_head.*."]
465
- _supports_flash_attn_2 = False
466
- _supports_sdpa = False
467
-
468
- def _init_weights(self, module):
469
- pass
470
-
471
-
472
- # Copied from transformers.models.mistral.modeling_mistral.MistralModel with Mistral->Grok
473
- class GrokModel(GrokPreTrainedModel):
474
- """
475
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GrokDecoderLayer`]
476
-
477
- Args:
478
- config: GrokConfig
479
- """
480
-
481
- def __init__(self, config: GrokConfig):
482
- super().__init__(config)
483
- self.padding_idx = config.pad_token_id
484
- self.vocab_size = config.vocab_size
485
- self.embedding_multiplier_scale = config.embedding_multiplier_scale
486
-
487
- self.in_out_embed = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
488
- self.decoder_layer = nn.ModuleList(
489
- [GrokDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
490
- )
491
- self.rms_norm = GrokRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
492
-
493
- self.gradient_checkpointing = False
494
- # Initialize weights and apply final processing
495
- self.post_init()
496
-
497
- def get_input_embeddings(self):
498
- return self.in_out_embed
499
-
500
- def set_input_embeddings(self, value):
501
- self.in_out_embed = value
502
-
503
- # Ignore copy
504
- def forward(
505
- self,
506
- input_ids: torch.LongTensor = None,
507
- attention_mask: Optional[torch.Tensor] = None,
508
- position_ids: Optional[torch.LongTensor] = None,
509
- past_key_values: Optional[List[torch.FloatTensor]] = None,
510
- inputs_embeds: Optional[torch.FloatTensor] = None,
511
- use_cache: Optional[bool] = None,
512
- output_attentions: Optional[bool] = None,
513
- output_hidden_states: Optional[bool] = None,
514
- output_router_logits: Optional[bool] = None,
515
- return_dict: Optional[bool] = None,
516
- ) -> Union[Tuple, MoeModelOutputWithPast]:
517
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
518
- output_router_logits = (
519
- output_router_logits if output_router_logits is not None else self.config.output_router_logits
520
- )
521
- output_hidden_states = (
522
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
523
- )
524
- use_cache = use_cache if use_cache is not None else self.config.use_cache
525
-
526
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
527
-
528
- # retrieve input_ids and inputs_embeds
529
- if input_ids is not None and inputs_embeds is not None:
530
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
531
- elif input_ids is not None:
532
- batch_size, seq_length = input_ids.shape
533
- elif inputs_embeds is not None:
534
- batch_size, seq_length, _ = inputs_embeds.shape
535
- else:
536
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
537
-
538
- past_key_values_length = 0
539
-
540
- if self.gradient_checkpointing and self.training:
541
- if use_cache:
542
- logger.warning_once(
543
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
544
- )
545
- use_cache = False
546
-
547
- if use_cache:
548
- use_legacy_cache = not isinstance(past_key_values, Cache)
549
- if use_legacy_cache:
550
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
551
- past_key_values_length = past_key_values.get_usable_length(seq_length)
552
-
553
- if position_ids is None:
554
- device = input_ids.device if input_ids is not None else inputs_embeds.device
555
- position_ids = torch.arange(
556
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
557
- )
558
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
559
- else:
560
- position_ids = position_ids.view(-1, seq_length).long()
561
-
562
- if inputs_embeds is None:
563
- inputs_embeds = self.in_out_embed(input_ids)
564
-
565
- attention_mask = _prepare_4d_causal_attention_mask(
566
- attention_mask,
567
- (batch_size, seq_length),
568
- inputs_embeds,
569
- past_key_values_length,
570
- )
571
-
572
- hidden_states = inputs_embeds
573
- hidden_states *= self.embedding_multiplier_scale
574
-
575
- # decoder layers
576
- all_hidden_states = () if output_hidden_states else None
577
- all_self_attns = () if output_attentions else None
578
- all_router_logits = () if output_router_logits else None
579
- next_decoder_cache = None
580
-
581
- for decoder_layer in self.decoder_layer:
582
- if output_hidden_states:
583
- all_hidden_states += (hidden_states,)
584
-
585
- if self.gradient_checkpointing and self.training:
586
- layer_outputs = self._gradient_checkpointing_func(
587
- decoder_layer.__call__,
588
- hidden_states,
589
- attention_mask,
590
- position_ids,
591
- past_key_values,
592
- output_attentions,
593
- output_router_logits,
594
- use_cache,
595
- )
596
- else:
597
- layer_outputs = decoder_layer(
598
- hidden_states,
599
- attention_mask=attention_mask,
600
- position_ids=position_ids,
601
- past_key_value=past_key_values,
602
- output_attentions=output_attentions,
603
- output_router_logits=output_router_logits,
604
- use_cache=use_cache,
605
- )
606
-
607
- hidden_states = layer_outputs[0]
608
-
609
- if use_cache:
610
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
611
-
612
- if output_attentions:
613
- all_self_attns += (layer_outputs[1],)
614
-
615
- if output_router_logits:
616
- all_router_logits += (layer_outputs[-1],)
617
-
618
- hidden_states = self.rms_norm(hidden_states)
619
-
620
- # add hidden states from the last decoder layer
621
- if output_hidden_states:
622
- all_hidden_states += (hidden_states,)
623
-
624
- next_cache = None
625
- if use_cache:
626
- next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
627
-
628
- if not return_dict:
629
- return tuple(
630
- v
631
- for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
632
- if v is not None
633
- )
634
- return MoeModelOutputWithPast(
635
- last_hidden_state=hidden_states,
636
- past_key_values=next_cache,
637
- hidden_states=all_hidden_states,
638
- attentions=all_self_attns,
639
- router_logits=all_router_logits,
640
- )
641
-
642
-
643
- class GrokForCausalLM(GrokPreTrainedModel):
644
- _tied_weights_keys = ["lm_head.weight"]
645
-
646
- def __init__(self, config):
647
- super().__init__(config)
648
- self.transformer = GrokModel(config)
649
- self.vocab_size = config.vocab_size
650
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
651
- self.router_aux_loss_coef = config.router_aux_loss_coef
652
- self.num_experts = config.num_local_experts
653
- self.num_experts_per_tok = config.num_experts_per_tok
654
- self.output_multiplier_scale = config.output_multiplier_scale
655
- # Initialize weights and apply final processing
656
- self.post_init()
657
-
658
- def get_input_embeddings(self):
659
- return self.transformer.in_out_embed
660
-
661
- def set_input_embeddings(self, value):
662
- self.transformer.in_out_embed = value
663
-
664
- def get_output_embeddings(self):
665
- return self.lm_head
666
-
667
- def set_output_embeddings(self, new_embeddings):
668
- self.lm_head = new_embeddings
669
-
670
- def set_decoder(self, decoder):
671
- self.transformer = decoder
672
-
673
- def get_decoder(self):
674
- return self.transformer
675
-
676
- def _tie_weights(self):
677
- self._tie_or_clone_weights(self.lm_head, self.get_input_embeddings())
678
-
679
- # Ignore copy
680
- def forward(
681
- self,
682
- input_ids: torch.LongTensor = None,
683
- attention_mask: Optional[torch.Tensor] = None,
684
- position_ids: Optional[torch.LongTensor] = None,
685
- past_key_values: Optional[List[torch.FloatTensor]] = None,
686
- inputs_embeds: Optional[torch.FloatTensor] = None,
687
- labels: Optional[torch.LongTensor] = None,
688
- use_cache: Optional[bool] = None,
689
- output_attentions: Optional[bool] = None,
690
- output_hidden_states: Optional[bool] = None,
691
- output_router_logits: Optional[bool] = None,
692
- return_dict: Optional[bool] = None,
693
- ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
694
- r"""
695
- Args:
696
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
697
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
698
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
699
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
700
-
701
- Returns:
702
-
703
- """
704
-
705
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
706
- output_router_logits = (
707
- output_router_logits if output_router_logits is not None else self.config.output_router_logits
708
- )
709
-
710
- output_hidden_states = (
711
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
712
- )
713
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
714
-
715
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
716
- outputs = self.transformer(
717
- input_ids=input_ids,
718
- attention_mask=attention_mask,
719
- position_ids=position_ids,
720
- past_key_values=past_key_values,
721
- inputs_embeds=inputs_embeds,
722
- use_cache=use_cache,
723
- output_attentions=output_attentions,
724
- output_hidden_states=output_hidden_states,
725
- output_router_logits=output_router_logits,
726
- return_dict=return_dict,
727
- )
728
-
729
- hidden_states = outputs[0]
730
- logits = self.lm_head(hidden_states)
731
- logits = logits * self.output_multiplier_scale
732
- logits = logits.float()
733
-
734
- loss = None
735
- if labels is not None:
736
- # Shift so that tokens < n predict n
737
- shift_logits = logits[..., :-1, :].contiguous()
738
- shift_labels = labels[..., 1:].contiguous()
739
- # Flatten the tokens
740
- loss_fct = CrossEntropyLoss()
741
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
742
- shift_labels = shift_labels.view(-1)
743
- # Enable model parallelism
744
- shift_labels = shift_labels.to(shift_logits.device)
745
- loss = loss_fct(shift_logits, shift_labels)
746
-
747
- aux_loss = None
748
- if output_router_logits:
749
- aux_loss = load_balancing_loss_func(
750
- outputs.router_logits if return_dict else outputs[-1],
751
- self.num_experts,
752
- self.num_experts_per_tok,
753
- attention_mask,
754
- )
755
- if labels is not None:
756
- loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
757
-
758
- if not return_dict:
759
- output = (logits,) + outputs[1:]
760
- if output_router_logits:
761
- output = (aux_loss,) + output
762
- return (loss,) + output if loss is not None else output
763
-
764
- return MoeCausalLMOutputWithPast(
765
- loss=loss,
766
- aux_loss=aux_loss,
767
- logits=logits,
768
- past_key_values=outputs.past_key_values,
769
- hidden_states=outputs.hidden_states,
770
- attentions=outputs.attentions,
771
- router_logits=outputs.router_logits,
772
- )
773
-
774
- def prepare_inputs_for_generation(
775
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
776
- ):
777
- # Omit tokens covered by past_key_values
778
- if past_key_values is not None:
779
- if isinstance(past_key_values, Cache):
780
- cache_length = past_key_values.get_seq_length()
781
- past_length = past_key_values.seen_tokens
782
- max_cache_length = past_key_values.get_max_length()
783
- else:
784
- cache_length = past_length = past_key_values[0][0].shape[2]
785
- max_cache_length = None
786
-
787
- # Keep only the unprocessed tokens:
788
- # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
789
- # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
790
- # input)
791
- if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
792
- input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
793
- # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
794
- # input_ids based on the past_length.
795
- elif past_length < input_ids.shape[1]:
796
- input_ids = input_ids[:, past_length:]
797
- # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
798
-
799
- # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
800
- if (
801
- max_cache_length is not None
802
- and attention_mask is not None
803
- and cache_length + input_ids.shape[1] > max_cache_length
804
- ):
805
- attention_mask = attention_mask[:, -max_cache_length:]
806
-
807
- position_ids = kwargs.get("position_ids", None)
808
- if attention_mask is not None and position_ids is None:
809
- # create position_ids on the fly for batch generation
810
- position_ids = attention_mask.long().cumsum(-1) - 1
811
- position_ids.masked_fill_(attention_mask == 0, 1)
812
- if past_key_values:
813
- position_ids = position_ids[:, -input_ids.shape[1] :]
814
-
815
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
816
- if inputs_embeds is not None and past_key_values is None:
817
- model_inputs = {"inputs_embeds": inputs_embeds}
818
- else:
819
- model_inputs = {"input_ids": input_ids}
820
-
821
- model_inputs.update(
822
- {
823
- "position_ids": position_ids,
824
- "past_key_values": past_key_values,
825
- "use_cache": kwargs.get("use_cache"),
826
- "attention_mask": attention_mask,
827
- }
828
- )
829
- return model_inputs
830
-
831
- @staticmethod
832
- def _reorder_cache(past_key_values, beam_idx):
833
- reordered_past = ()
834
- for layer_past in past_key_values:
835
- reordered_past += (
836
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
837
- )
838
- return reordered_past
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pytorch_model-00001-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:49bf50ef3d70afd8e7d199223f8472bc7296f2407ec2f43809ca62276ebaa9a9
3
- size 24688084712
 
 
 
 
pytorch_model-00002-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cd2e170b63a6532af4f1e7cde4fb51c34bd810aaa0ebbf33345f36f1d08fe9ac
3
- size 35962479774
 
 
 
 
pytorch_model-00003-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:abb2c6f340f4d0f122c92479f0c2e9324d8f415af1bed4a645e6a374dd7693c3
3
- size 32917463282
 
 
 
 
pytorch_model-00004-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9fdff65e71dc305f23181d18ea28b35c5b740f3d624a6d7e92495ccb7cb7a07
3
- size 35962479902
 
 
 
 
pytorch_model-00005-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:88ec608b37942f333a7274017d4d7ef47e8c420ec3d1c251a0002e08da59a852
3
- size 32917463410
 
 
 
 
pytorch_model-00006-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:52ad50ece14037cc7d7165d720b02c19619e45d354ff1f46b6b568975106e1a2
3
- size 35962479902
 
 
 
 
pytorch_model-00007-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:15b5b209f1c94aed54d67b5bccd67be3696c042ce8af4d04317a834aa70c9feb
3
- size 32917463410
 
 
 
 
pytorch_model-00008-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1a78713c58d353f9835ac0913f80e45c57aa34a93813bba937e39ac37ed09c46
3
- size 35962479902
 
 
 
 
pytorch_model-00009-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ccaa848a8f0f1245019b69e8bf883f51d3a36ba9f251813cd48c28fca597b1c1
3
- size 32917463410
 
 
 
 
pytorch_model-00010-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0e11fc345ffdf8cb429deeca6ad79ebbf77a4684e845e6857a4003235c6e074e
3
- size 35962479902
 
 
 
 
pytorch_model-00011-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8d180e294abda6722fe27332a1d7311f6256c490db667ce8041345fd912f06e2
3
- size 32917463410
 
 
 
 
pytorch_model-00012-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:aaaeeece29933f8ed8e3bd2ba431f80ee692f525b0a33ff9fbc9e4e319c354d4
3
- size 35962479902
 
 
 
 
pytorch_model-00013-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1dd78618c0245d6388b13a88eba6577b958a10cd88342a060c6ca9ad559c0feb
3
- size 32917463410
 
 
 
 
pytorch_model-00014-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0a0c17526baf9136881fd3438bf347e527bcdbb6c014bc25e2fea8d621ee85a6
3
- size 35962479902
 
 
 
 
pytorch_model-00015-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:af1b44d316af3cb0d66e4e2f3703e0956a70b77b0f1754cea611aea499ec25a9
3
- size 32917463410
 
 
 
 
pytorch_model-00016-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3082fac8e8f9a2d0271b1a88ce1812b6ef41ff40cdfca7e4d9ce16d0241e36b1
3
- size 35962479902
 
 
 
 
pytorch_model-00017-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:931d80d3cc5157b219ccaaa3c5b6ab5c3996300162cc6f6cf27780f2f0de7262
3
- size 32917463410
 
 
 
 
pytorch_model-00018-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:74d3dfe9067c0185982e8a6fcf91612da6e118782eb92849452289af1bc75d06
3
- size 35962479902
 
 
 
 
pytorch_model-00019-of-00019.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:adf12c09aae1a83384d945c440524cd8e2e3ce4dffb83bad3f96857a8a55a770
3
- size 19679996468
 
 
 
 
pytorch_model.bin.index.json DELETED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json DELETED
@@ -1,23 +0,0 @@
1
- {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "eos_token": {
10
- "content": "</s>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "unk_token": {
17
- "content": "<unk>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- }
23
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
tokenizer.model DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5c69d7cbad192fa2c9d14e2a77fbfdc11597c68907b043ddb0260e3d28eddd7f
3
- size 2229219