File size: 18,834 Bytes
664254b df623cc a0de123 df623cc 3870247 df623cc 9d7b82a a4f6c61 9d7b82a a4f6c61 9d7b82a 883fb39 9d7b82a a4f6c61 9d7b82a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
---
language:
- en
- ko
pipeline_tag: text-generation
inference: false
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
- kollama
- llama-2-ko
- llama-2-ko-chat
- legal-llama
- law-llama
- legal-gpt
- law-gpt
---
<img src=https://github.com/taemin6697/Paper_Review/assets/96530685/9f94505c-4fda-41ae-9a67-1e4c96c501cc style="max-width: 500px; width: 100%" />
Llama-2-Ko-7b-Chatμ [kfkas/Llama-2-ko-7b-Chat](https://huggingface.co/kfkas/Llama-2-ko-7b-Chat)λ₯Ό ν λλ‘ λ§λ€μ΄μ‘μ΅λλ€. νμ΅ λ°μ΄ν°λ μ체 λ²λ₯ μ§μ μλ΅ λ°μ΄ν°λ₯Ό ν΅ν΄ νμ΅νμμ΅λλ€.
## Model Details
**Backbone Model** kfkas/Llama-2-ko-7b-Chat
**Model Developers** Boostcamp AI Tech Team YoonSeul
**data** leagl data
**prompts** kullm
**Input** Models input text only.
**Output** Models generate text only.
---
| Model | μ§λ¬Έ : μλΉ κ° λμκ°μκ³ λμ ν μ μΉμΈκ³Ό μμ ν¬κΈ° νκ²°λ¬Έμ λ°μλλ°μ. κ·Έλ¬κ³ λμ κ·Όλ‘ κ±΄μ€κ³΅μ νμμ μ νκ° μλλ°μ. ν΄μ§κΈ 곡μ κ° μλ€κ³ μ μ²νμ¬μ μ°Ύμκ°λΌκ³ νμλλΌκ³ μ. κ·Όλ° μ΄κ² μμμΈμ κ³ μ μ¬μ°μ΄ λ€ μλλ€ νμ¬ λ²μμ μ¬μ°μΌλ‘ μ κ³ νμ¬μΌ νλ€κ³ μ ν΄λ λλ€κ³ ν©λλ€. μ ννκ² μκ³ μΆμ΅λλ€. μμμΈμ κ³ μ μ¬μ°μΌλ‘ λ²μμ μ¬μ° μ κ³ νμ¬μΌ νλμ? μλλ©΄ μ ν΄λ λλμ? |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Llama-2-ko-7b-Chat | `[μλ
νμΈμ! μμμΈ κ³ μ μ¬μ°μ΄ μλλλΌλ κ·Όλ‘건μ€κ³΅μ νλ‘λΆν° ν΄μ§κΈμ μ§κΈλ°κΈ° μν΄ λ²μμ μ¬μ°μ μ κ³ ν΄μΌ ν μ μμ΅λλ€. νμ§λ§ ꡬ체μ μΈ μν©μ μμμΈμ΄ μν κ΅κ°μ λ²λ₯ μ λ°λΌ λ¬λΌμ§ μ μμΌλ―λ‘, ν΄λΉ λ²λ₯ μ λ¬Έκ°μκ² λ¬Έμνκ±°λ νμΈνλ κ²μ΄ μ’μ΅λλ€. μμμΈμ΄ μμ μ¬μ°μ μ κ³ νμ§ μκ³ λ ν΄μ§κΈμ λ°μ μ μλ κ²½μ°λ μμ§λ§, κ²½μ°μ λ°λΌ μΆκ°μ μΈ μ μ°¨κ° νμν μλ μμ΅λλ€. μμμΈμ μμ μ¬μ°μ λ²μκ° λΆλΆλͺ
νκ±°λ μμ μ¬μ°μ΄ μ ν μμ μ μλ λ± λ€μν μν©μ μ§λ©΄ν μ μκΈ° λλ¬Έμ, κ΄λ ¨ λ²λ₯ μ λ¬Έκ°μ μ‘°μΈμ ꡬνλ κ²μ΄ μ€μν©λλ€.]` |
| kfkas/Legal-Llama-2-ko-7b-Chat | `[μμμΈμ κ³ μ μ¬μ°μ μμμΈμκ² κ·μλλ μμ μ¬μ°μ
λλ€. μμμΈμ΄ μμ μ¬μ°μ λν κΆλ¦¬μ μ무λ₯Ό νμ¬ν μ μμ΅λλ€. μμ μ¬μ°μλ μμμΈ κ³ μ μ¬μ°κ³Ό μΌλ° μμ μ¬μ°μ΄ ν¬ν¨λ©λλ€. μμμΈμ μμ μ¬μ°μ λ²μ λ΄μμ μμ μ¬μ°μ κ΄λ¦¬νκ³ μ²λΆν μ μμΌλ©°, μμ μ¬μ° μ€ μΌλΆλ₯Ό λ€λ₯Έ μμμΈμκ² μ¦μ¬ν μλ μμ΅λλ€.κ·Έλ¬λ μμ μ¬μ° μ€μμ μμμΈμ΄ κ³ μ μ¬μ°μΌλ‘ μ·¨λν μ¬μ°μ΄ μλ κ²½μ°, μμμΈμ κ·Έ μ¬μ°μ μμ μ¬μ°μμ μ μΈμμΈκ° κ³ΌμΈλ©λλ€.λ°λΌμ μμ μ¬μ° μ€μ μμμΈμ΄ μμ ν κ³ μ μ¬μ°μ μ μΈνκ³ μμ μ¬μ°μ κ³μ°νμ¬ μμμΈ μ κ³ λ₯Ό ν΄μΌ νλ©°, μμμΈ μ κ³ μμλ μμ μ¬μ° λͺ©λ‘μ μμ±νμ¬ μ μΆνμ¬μΌ ν©λλ€. λν, μμμΈλ μμ κ°μμΌ(μ¬λ§μΌ)λ‘λΆν° 6κ°μ μ΄λ΄μ μ κ³ ν΄μΌ νλ©°, μ κ³ νμ§ μμ κ²½μ° κ°μ°μΈκ° λΆκ³Όλ μ μμΌλ―λ‘ μ£Όμν΄μΌ ν©λλ€.(μ°Έκ³ : μμμΈλ² μ 18μ‘°)]` |
---
| Model | μ§λ¬Έ : μ¬νμ΄ λλ νμ μν΄λ°°μ μ²κ΅¬λ₯Ό ν μ μλμ§ κΆκΈν©λλ€. λΆλμ° κ΄λ ¨ μ¬κΈ°λ₯Ό λΉν΄μ μμΈν μλ΄μ λ°κ³ μΆμ΄μ |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Llama-2-ko-7b-Chat | `[μ, μ¬νμ΄ λλ νμλ λ―Όμ¬ μμ‘μ μ κΈ°ν μ μμ΅λλ€. λΆλμ° μ¬κΈ° λλ κΈ°ν λ―Όμ¬ λΆμκ³Ό κ΄λ ¨νμ¬ λ³νΈμ¬μ λμμ ꡬν μ μλ λͺ κ°μ§ μ΅μ
μ΄ μμ΅λλ€:1. λ―Όμ¬ μμ‘: λΆλμ° μ¬κΈ°μ κ°μ λ―Όμ¬ λΆμμ΄ μλ κ²½μ° λ³νΈμ¬λ₯Ό κ³ μ©νμ¬ λ―Όμ¬μμ‘μ μ κΈ°νμ¬ μν΄ λ°°μμ μ²κ΅¬νλ κ²μ΄ κ°μ₯ μΌλ°μ μ
λλ€.2. κ°μΈ μμ₯: λ―Όμ¬ μ¬κ±΄μμ λ―Όμ¬ μμ₯μ μμ±νμ¬ λ²μμ μ μΆνλ κ²λ ν κ°μ§ λ°©λ²μ
λλ€.3. μ€μ¬: μ€μ¬ κΈ°κ΄μ ν΅ν΄ λΆμμ ν΄κ²°ν μλ μμ΅λλ€.4. νμ¬ κ³ μ: λΆλμ° μ¬κΈ°λ‘ νμ¬ κ³ μκ° κ°λ₯νμ§ νμΈν΄μΌ ν©λλ€. μ΄λ¬ν μ΅μ
μ€ μ΄λ€ κ²μ μ νν μ§ κ²°μ νκΈ° μ μ λ³νΈμ¬μ μλ΄νμ¬ μ‘°μΈμ ꡬνλ κ²μ΄ μ’μ΅λλ€.]` |
| Legal-Llama-2-ko-7b-Chat | `[μ, μ¬νμ΄ λλ νμλ μν΄λ°°μ μ²κ΅¬κ° κ°λ₯ν©λλ€. λ―Όμ¬μμ‘λ² μ 766μ‘°(μν΄λ°°μμ²κ΅¬κΆμ μλ©Έμν¨)μ λ°λ₯΄λ©΄, λΆλ²νμλ‘ μΈν μν΄λ°°μμ μ²κ΅¬κΆμ νΌν΄μλ κ·Έ λ²μ λ리μΈμ΄ κ·Έ μν΄ λ° κ°ν΄μλ₯Ό μ λ λ‘λΆν° 3λ
κ° μ΄λ₯Ό νμ¬νμ§ μλνλ©΄ μν¨λ‘ μΈνμ¬ μλ©Ένλ€κ³ κ·μ νκ³ μμ΅λλ€.λ°λΌμ λΆλμ° μ¬κΈ°λ‘ μΈν΄ μ
μ μν΄λ₯Ό μ
μ¦ν μ μλ μ¦κ±°μ μ¦μΈμ ν보νκ³ , λ²μμ μν΄λ°°μμ μ²κ΅¬ν μ μμ΅λλ€. λν, λΆλμ° μ¬κΈ°λ₯Ό λΉν μ¬μ€μ κ²½μ°°μ μ κ³ νμ¬ μμ¬λ₯Ό μλ’°νλ κ²λ μ’μ λ°©λ²μ
λλ€.]` |
---
### Inference
```python
def gen(x, model, tokenizer, device):
prompt = (
f"μλλ μμ
μ μ€λͺ
νλ λͺ
λ Ήμ΄μ
λλ€. μμ²μ μ μ ν μλ£νλ μλ΅μ μμ±νμΈμ.\n\n### λͺ
λ Ήμ΄:\n{x}\n\n### μλ΅:"
)
len_prompt = len(prompt)
gened = model.generate(
**tokenizer(prompt, return_tensors="pt", return_token_type_ids=False).to(
device
),
max_new_tokens=1024,
early_stopping=True,
do_sample=True,
top_k=20,
top_p=0.92,
no_repeat_ngram_size=3,
eos_token_id=2,
repetition_penalty=1.2,
num_beams=3
)
return tokenizer.decode(gened[0])[len_prompt:]
def LLM_infer(input):
device = (
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
)
model_id = "kfkas/Legal-Llama-2-ko-7b-Chat"
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map={"": 0},torch_dtype=torch.float16, low_cpu_mem_usage=True
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model.eval()
model.config.use_cache = (True)
tokenizer.pad_token = tokenizer.eos_token
output = gen(input, model=model, tokenizer=tokenizer, device=device)
return output
if __name__ == "__main__":
text = LLM_infer("μμ£Όμ΄μ μ νλ©΄ μ΄λ»κ² μ²λ² λ°μ?")
print(text)
```
## Note for oobabooga/text-generation-webui
Remove `ValueError` at `load_tokenizer` function(line 109 or near), in `modules/models.py`.
```python
diff --git a/modules/models.py b/modules/models.py
index 232d5fa..de5b7a0 100644
--- a/modules/models.py
+++ b/modules/models.py
@@ -106,7 +106,7 @@ def load_tokenizer(model_name, model):
trust_remote_code=shared.args.trust_remote_code,
use_fast=False
)
- except ValueError:
+ except:
tokenizer = AutoTokenizer.from_pretrained(
path_to_model,
trust_remote_code=shared.args.trust_remote_code,
```
Since Llama-2-Ko uses FastTokenizer provided by HF tokenizers NOT sentencepiece package,
it is required to use `use_fast=True` option when initialize tokenizer.
Apple Sillicon does not support BF16 computing, use CPU instead. (BF16 is supported when using NVIDIA GPU)
---
> Below is the original model card of the Llama-2 model.
# **Llama 2**
Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.
## Model Details
*Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.*
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
**Model Developers** Meta
**Variations** Llama 2 comes in a range of parameter sizes β 7B, 13B, and 70B β as well as pretrained and fine-tuned variations.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.
||Training Data|Params|Content Length|GQA|Tokens|LR|
|---|---|---|---|---|---|---|
|Llama 2|*A new mix of publicly available online data*|7B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|13B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|70B|4k|✔|2.0T|1.5 x 10<sup>-4</sup>|
*Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Dates** Llama 2 was trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288)
## Intended Use
**Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212).
**Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Metaβs sustainability program.
||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
|---|---|---|---|
|Llama 2 7B|184320|400|31.22|
|Llama 2 13B|368640|400|62.44|
|Llama 2 70B|1720320|400|291.42|
|Total|3311616||539.00|
**CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.
## Evaluation Results
In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library.
|Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
|---|---|---|---|---|---|---|---|---|---|
|Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
|Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
|Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
|Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
|Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
|Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
|Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|
**Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama 1|7B|27.42|23.00|
|Llama 1|13B|41.74|23.08|
|Llama 1|33B|44.19|22.57|
|Llama 1|65B|48.71|21.77|
|Llama 2|7B|33.29|**21.25**|
|Llama 2|13B|41.86|26.10|
|Llama 2|70B|**50.18**|24.60|
**Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama-2-Chat|7B|57.04|**0.00**|
|Llama-2-Chat|13B|62.18|**0.00**|
|Llama-2-Chat|70B|**64.14**|0.01|
**Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.
## Ethical Considerations and Limitations
Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2βs potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide)
## Reporting Issues
Please report any software βbug,β or other problems with the models through one of the following means:
- Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
- Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
- Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
## Llama Model Index
|Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf|
|---|---|---|---|---|
|7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)|
|13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)|
|70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
|