---
language:
- ko
tags:
- generated_from_keras_callback
model-index:
- name: RoBERTa-large-Detection-P2G
results: []
---
# RoBERTa-large-Detection-P2G
이 모델은 klue/roberta-large을 국립 국어원 신문 말뭉치 5만개의 문장을 2021을 g2pK로 훈련시켜 G2P된 데이터를 탐지합니다.
git : https://github.com/taemin6697
## Usage
```python
from transformers import AutoTokenizer, RobertaForSequenceClassification
import torch
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_dir = "kfkas/RoBERTa-large-Detection-G2P"
tokenizer = AutoTokenizer.from_pretrained('klue/roberta-large')
model = RobertaForSequenceClassification.from_pretrained(model_dir).to(device)
text = "월드커 파나은행 대표티메 행우늬 이달러 이영영장 선물"
with torch.no_grad():
x = tokenizer(text, padding='max_length', truncation=True, return_tensors='pt', max_length=128)
y_pred = model(x["input_ids"].to(device))
logits = y_pred.logits
y_pred = logits.detach().cpu().numpy()
y = np.argmax(y_pred)
print(y)
#1
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float16
### Training results
### Framework versions
- Transformers 4.22.1
- TensorFlow 2.10.0
- Datasets 2.5.1
- Tokenizers 0.12.1