File size: 1,845 Bytes
efedd55
 
 
 
 
 
4c18240
efedd55
 
 
 
 
 
4c18240
8feb836
 
efedd55
 
 
 
8feb836
a252122
1f8db16
efedd55
 
a252122
efedd55
a252122
1f8db16
a252122
 
 
 
 
 
 
 
 
 
 
1f8db16
efedd55
 
 
1f8db16
efedd55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
language:
  - ko
tags:
- generated_from_keras_callback
model-index:
- name: t5-large-korean-news-title-klue-ynat
  results: []
---

# t5-large-korean-text-summary


์ด ๋ชจ๋ธ์€ lcw99 / t5-large-korean-text-summary์„ klue-ynat์œผ๋กœ ํ›ˆ๋ จ์‹œ์ผœ ๋งŒ๋“  ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.
Input = ['IT๊ณผํ•™','๊ฒฝ์ œ','์‚ฌํšŒ','์ƒํ™œ๋ฌธํ™”','์„ธ๊ณ„','์Šคํฌ์ธ ','์ •์น˜']
OUTPUT = ๊ฐ label์— ๋งž๋Š” ๋‰ด์Šค ๊ธฐ์‚ฌ ์ œ๋ชฉ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

## Usage
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_dir = "kfkas/t5-large-korean-news-title-klue-ynat"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)
model.to(device)

label_list = ['IT๊ณผํ•™','๊ฒฝ์ œ','์‚ฌํšŒ','์ƒํ™œ๋ฌธํ™”','์„ธ๊ณ„','์Šคํฌ์ธ ','์ •์น˜']
text = "๊ฒฝ์ œ"

inputs = tokenizer.encode(text, max_length=256, truncation=True, return_tensors="pt")
with torch.no_grad():
  output = model.generate(
    input_ids,
    do_sample=True, #์ƒ˜ํ”Œ๋ง ์ „๋žต ์‚ฌ์šฉ
    max_length=128, # ์ตœ๋Œ€ ๋””์ฝ”๋”ฉ ๊ธธ์ด๋Š” 50
    top_k=50, # ํ™•๋ฅ  ์ˆœ์œ„๊ฐ€ 50์œ„ ๋ฐ–์ธ ํ† ํฐ์€ ์ƒ˜ํ”Œ๋ง์—์„œ ์ œ์™ธ
    top_p=0.95, # ๋ˆ„์  ํ™•๋ฅ ์ด 95%์ธ ํ›„๋ณด์ง‘ํ•ฉ์—์„œ๋งŒ ์ƒ์„ฑ
)
decoded_output = tokenizer.decode(output, skip_special_tokens=True)[0]
print(predicted_title)#์ •๋ถ€ ๊ธฐ์—… ๊ณ ์šฉ์ฐฝ์ถœยท์„ฑ์žฅ ์ด‰์ง„ ์œ„ํ•œ ๊ฒฝ์ œ์ •์ฑ… ํ™•๋Œ€ ์ฃผ๋ชฉ
```



## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: None
- training_precision: float16
### Training results
### Framework versions
- Transformers 4.22.1
- TensorFlow 2.10.0
- Datasets 2.5.1
- Tokenizers 0.12.1