Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: FacebookAI/roberta-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: green_as_train_context_roberta-large
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# green_as_train_context_roberta-large
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.8427
|
23 |
+
- Accuracy: 0.8885
|
24 |
+
- Recall: 0.5802
|
25 |
+
- F1: 0.6533
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 1e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 5
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|
|
57 |
+
| 0.1927 | 1.0 | 1012 | 0.3691 | 0.8916 | 0.5864 | 0.6620 |
|
58 |
+
| 0.1417 | 2.0 | 2024 | 0.4204 | 0.8944 | 0.6281 | 0.6829 |
|
59 |
+
| 0.0954 | 3.0 | 3036 | 0.5585 | 0.8932 | 0.6111 | 0.6746 |
|
60 |
+
| 0.0447 | 4.0 | 4048 | 0.7888 | 0.8890 | 0.5849 | 0.6563 |
|
61 |
+
| 0.0217 | 5.0 | 5060 | 0.8427 | 0.8885 | 0.5802 | 0.6533 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.38.2
|
67 |
+
- Pytorch 2.1.2
|
68 |
+
- Datasets 2.18.0
|
69 |
+
- Tokenizers 0.15.2
|