kghanlon commited on
Commit
b85e95f
1 Parent(s): 2e5c109

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: non_green_as_train_contextroberta-large_20e
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # non_green_as_train_contextroberta-large_20e
15
+
16
+ This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.3214
19
+ - Val Accuracy: 0.9779
20
+ - Val Precision: 0.6893
21
+ - Val Recall: 0.7568
22
+ - Val F1: 0.7215
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-06
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 20
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Val Accuracy | Val Precision | Val Recall | Val F1 |
53
+ |:-------------:|:-----:|:------:|:---------------:|:------------:|:-------------:|:----------:|:------:|
54
+ | 0.0601 | 1.0 | 7739 | 0.0767 | 0.9763 | 0.6646 | 0.7518 | 0.7055 |
55
+ | 0.0493 | 2.0 | 15478 | 0.0995 | 0.9785 | 0.7181 | 0.7094 | 0.7137 |
56
+ | 0.0305 | 3.0 | 23217 | 0.1216 | 0.9765 | 0.6670 | 0.7578 | 0.7095 |
57
+ | 0.0196 | 4.0 | 30956 | 0.1275 | 0.9786 | 0.7066 | 0.7437 | 0.7247 |
58
+ | 0.0161 | 5.0 | 38695 | 0.1521 | 0.9768 | 0.7164 | 0.6398 | 0.6759 |
59
+ | 0.0141 | 6.0 | 46434 | 0.1643 | 0.9785 | 0.7103 | 0.7275 | 0.7188 |
60
+ | 0.007 | 7.0 | 54173 | 0.1660 | 0.9769 | 0.6739 | 0.7528 | 0.7112 |
61
+ | 0.0052 | 8.0 | 61912 | 0.1855 | 0.9783 | 0.7036 | 0.7376 | 0.7202 |
62
+ | 0.0048 | 9.0 | 69651 | 0.1845 | 0.9781 | 0.7042 | 0.7255 | 0.7147 |
63
+ | 0.0031 | 10.0 | 77390 | 0.2165 | 0.9782 | 0.7225 | 0.6882 | 0.7049 |
64
+ | 0.0036 | 11.0 | 85129 | 0.2271 | 0.9783 | 0.7223 | 0.6902 | 0.7059 |
65
+ | 0.0029 | 12.0 | 92868 | 0.2345 | 0.9770 | 0.6887 | 0.7144 | 0.7013 |
66
+ | 0.0015 | 13.0 | 100607 | 0.2636 | 0.9781 | 0.7307 | 0.6680 | 0.6979 |
67
+ | 0.0045 | 14.0 | 108346 | 0.2493 | 0.9781 | 0.6846 | 0.7820 | 0.7301 |
68
+ | 0.0005 | 15.0 | 116085 | 0.2563 | 0.9774 | 0.6789 | 0.7639 | 0.7189 |
69
+ | 0.0007 | 16.0 | 123824 | 0.2856 | 0.9784 | 0.7193 | 0.7033 | 0.7112 |
70
+ | 0.0 | 17.0 | 131563 | 0.2809 | 0.9782 | 0.7136 | 0.7064 | 0.7099 |
71
+ | 0.0 | 18.0 | 139302 | 0.3033 | 0.9781 | 0.6957 | 0.7497 | 0.7217 |
72
+ | 0.0 | 19.0 | 147041 | 0.3207 | 0.9782 | 0.6909 | 0.7669 | 0.7269 |
73
+ | 0.0 | 20.0 | 154780 | 0.3214 | 0.9779 | 0.6893 | 0.7568 | 0.7215 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.38.2
79
+ - Pytorch 2.1.2
80
+ - Datasets 2.18.0
81
+ - Tokenizers 0.15.2