Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: FacebookAI/roberta-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: non_green_as_train_contextroberta-large_20e
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# non_green_as_train_contextroberta-large_20e
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.3214
|
19 |
+
- Val Accuracy: 0.9779
|
20 |
+
- Val Precision: 0.6893
|
21 |
+
- Val Recall: 0.7568
|
22 |
+
- Val F1: 0.7215
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-06
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 20
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Val Accuracy | Val Precision | Val Recall | Val F1 |
|
53 |
+
|:-------------:|:-----:|:------:|:---------------:|:------------:|:-------------:|:----------:|:------:|
|
54 |
+
| 0.0601 | 1.0 | 7739 | 0.0767 | 0.9763 | 0.6646 | 0.7518 | 0.7055 |
|
55 |
+
| 0.0493 | 2.0 | 15478 | 0.0995 | 0.9785 | 0.7181 | 0.7094 | 0.7137 |
|
56 |
+
| 0.0305 | 3.0 | 23217 | 0.1216 | 0.9765 | 0.6670 | 0.7578 | 0.7095 |
|
57 |
+
| 0.0196 | 4.0 | 30956 | 0.1275 | 0.9786 | 0.7066 | 0.7437 | 0.7247 |
|
58 |
+
| 0.0161 | 5.0 | 38695 | 0.1521 | 0.9768 | 0.7164 | 0.6398 | 0.6759 |
|
59 |
+
| 0.0141 | 6.0 | 46434 | 0.1643 | 0.9785 | 0.7103 | 0.7275 | 0.7188 |
|
60 |
+
| 0.007 | 7.0 | 54173 | 0.1660 | 0.9769 | 0.6739 | 0.7528 | 0.7112 |
|
61 |
+
| 0.0052 | 8.0 | 61912 | 0.1855 | 0.9783 | 0.7036 | 0.7376 | 0.7202 |
|
62 |
+
| 0.0048 | 9.0 | 69651 | 0.1845 | 0.9781 | 0.7042 | 0.7255 | 0.7147 |
|
63 |
+
| 0.0031 | 10.0 | 77390 | 0.2165 | 0.9782 | 0.7225 | 0.6882 | 0.7049 |
|
64 |
+
| 0.0036 | 11.0 | 85129 | 0.2271 | 0.9783 | 0.7223 | 0.6902 | 0.7059 |
|
65 |
+
| 0.0029 | 12.0 | 92868 | 0.2345 | 0.9770 | 0.6887 | 0.7144 | 0.7013 |
|
66 |
+
| 0.0015 | 13.0 | 100607 | 0.2636 | 0.9781 | 0.7307 | 0.6680 | 0.6979 |
|
67 |
+
| 0.0045 | 14.0 | 108346 | 0.2493 | 0.9781 | 0.6846 | 0.7820 | 0.7301 |
|
68 |
+
| 0.0005 | 15.0 | 116085 | 0.2563 | 0.9774 | 0.6789 | 0.7639 | 0.7189 |
|
69 |
+
| 0.0007 | 16.0 | 123824 | 0.2856 | 0.9784 | 0.7193 | 0.7033 | 0.7112 |
|
70 |
+
| 0.0 | 17.0 | 131563 | 0.2809 | 0.9782 | 0.7136 | 0.7064 | 0.7099 |
|
71 |
+
| 0.0 | 18.0 | 139302 | 0.3033 | 0.9781 | 0.6957 | 0.7497 | 0.7217 |
|
72 |
+
| 0.0 | 19.0 | 147041 | 0.3207 | 0.9782 | 0.6909 | 0.7669 | 0.7269 |
|
73 |
+
| 0.0 | 20.0 | 154780 | 0.3214 | 0.9779 | 0.6893 | 0.7568 | 0.7215 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.38.2
|
79 |
+
- Pytorch 2.1.2
|
80 |
+
- Datasets 2.18.0
|
81 |
+
- Tokenizers 0.15.2
|