--- license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer model-index: - name: non_green_as_train_contextroberta-large_20e results: [] --- # non_green_as_train_contextroberta-large_20e This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3214 - Val Accuracy: 0.9779 - Val Precision: 0.6893 - Val Recall: 0.7568 - Val F1: 0.7215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Val Accuracy | Val Precision | Val Recall | Val F1 | |:-------------:|:-----:|:------:|:---------------:|:------------:|:-------------:|:----------:|:------:| | 0.0601 | 1.0 | 7739 | 0.0767 | 0.9763 | 0.6646 | 0.7518 | 0.7055 | | 0.0493 | 2.0 | 15478 | 0.0995 | 0.9785 | 0.7181 | 0.7094 | 0.7137 | | 0.0305 | 3.0 | 23217 | 0.1216 | 0.9765 | 0.6670 | 0.7578 | 0.7095 | | 0.0196 | 4.0 | 30956 | 0.1275 | 0.9786 | 0.7066 | 0.7437 | 0.7247 | | 0.0161 | 5.0 | 38695 | 0.1521 | 0.9768 | 0.7164 | 0.6398 | 0.6759 | | 0.0141 | 6.0 | 46434 | 0.1643 | 0.9785 | 0.7103 | 0.7275 | 0.7188 | | 0.007 | 7.0 | 54173 | 0.1660 | 0.9769 | 0.6739 | 0.7528 | 0.7112 | | 0.0052 | 8.0 | 61912 | 0.1855 | 0.9783 | 0.7036 | 0.7376 | 0.7202 | | 0.0048 | 9.0 | 69651 | 0.1845 | 0.9781 | 0.7042 | 0.7255 | 0.7147 | | 0.0031 | 10.0 | 77390 | 0.2165 | 0.9782 | 0.7225 | 0.6882 | 0.7049 | | 0.0036 | 11.0 | 85129 | 0.2271 | 0.9783 | 0.7223 | 0.6902 | 0.7059 | | 0.0029 | 12.0 | 92868 | 0.2345 | 0.9770 | 0.6887 | 0.7144 | 0.7013 | | 0.0015 | 13.0 | 100607 | 0.2636 | 0.9781 | 0.7307 | 0.6680 | 0.6979 | | 0.0045 | 14.0 | 108346 | 0.2493 | 0.9781 | 0.6846 | 0.7820 | 0.7301 | | 0.0005 | 15.0 | 116085 | 0.2563 | 0.9774 | 0.6789 | 0.7639 | 0.7189 | | 0.0007 | 16.0 | 123824 | 0.2856 | 0.9784 | 0.7193 | 0.7033 | 0.7112 | | 0.0 | 17.0 | 131563 | 0.2809 | 0.9782 | 0.7136 | 0.7064 | 0.7099 | | 0.0 | 18.0 | 139302 | 0.3033 | 0.9781 | 0.6957 | 0.7497 | 0.7217 | | 0.0 | 19.0 | 147041 | 0.3207 | 0.9782 | 0.6909 | 0.7669 | 0.7269 | | 0.0 | 20.0 | 154780 | 0.3214 | 0.9779 | 0.6893 | 0.7568 | 0.7215 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2