khaled5321
commited on
Commit
·
a9ce094
1
Parent(s):
2d300f7
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1222.82 +/- 161.79
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8154520029a5374c8ffa5ae113ab4e2eeb756a19b1ff4ad49d2ec9241057b775
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe84a5e44c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe84a5e4550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe84a5e45e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe84a5e4670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe84a5e4700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe84a5e4790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe84a5e4820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe84a5e48b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe84a5e4940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe84a5e49d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe84a5e4a60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe84a5e4af0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fe84a5e2180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675020928143752603,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOjBzr16ofM+k/2zPnuqEj95t5g/fiGNPxUanz/Vk1++9IuYvwGYCjxkLmg+ignRv7X8Er/rcVI/pkBvvxCal773JwS/R2jYvvtwTj/cu1Q+woSXP8M7Lr/O/He+k8WSPjp2jr+9+RI/u1mmPugXCT86J9s/byq1Pojs4D5SQwI/2PODvglFuD/y1RPAQd7PP7nkmL99oZ08MSKEvm9Yjz5jw70/Wu6Gv9tFKMBq17c+/tyVvzZC1r5z/LW/Ip8FQEv+nL8tPhw/ddOjP8lUgsAzA2Y/vfkSP037RMABBe+/V3ETPqwYOz9jye898NejvqymPT+DmaG/aOEmP8d5qz/6Otw/aXexvze+PD/YAou/pnHFvzx27jyFA0A/fkmDv8Wdcj/FVdQ9MX3yvjLHjT9TQ6A/LBu9Pl3La79SNMY+MwNmP9ry3r+7WaY+6BcJP9BWgD6F+XM+MdMCP3+gVT+dfB4/7OmOPxC9lD/SeLa+0c+3PrKOB741pw8/UubWv3qAZb/e3Xw+vyOTvxVSrL3Ji7+7D/mgvwuqUD9Hnwo9ib2iPyuai7+QMbM9DUobPzp2jr+9+RI/u1mmPugXCT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA+CL61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPjxkvAAAAACSTfO/AAAAANULorwAAAAAAP3jPwAAAADwWHQ8AAAAACTR6z8AAAAAicKMPQAAAAB5RPW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh8efNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBKtCL0AAAAAjGDevwAAAAA7XaA7AAAAAO1t+z8AAAAAwXiTPQAAAAA8LeQ/AAAAAIc4yL0AAAAA/3XqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUHOLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICTb7k9AAAAABCT3r8AAAAAKNt9PQAAAABon/o/AAAAAOO+hL0AAAAAXYbgPwAAAADwf+U8AAAAAOuN8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjS+k1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAxRmPQAAAACgdu+/AAAAAF9DHLwAAAAANVb9PwAAAADTpgw+AAAAANcy+T8AAAAAuTsHvAAAAABjN+u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcjMJa7mMiMAWyUTegDjAF0lEdAp2jFh7Vrh3V9lChoBkdAepHRzzVc2WgHTegDaAhHQKdro8QI2O11fZQoaAZHQJV4QERradtoB03oA2gIR0CnbtziCJ40dX2UKGgGR0CUxrjwQUYbaAdN6ANoCEdAp2+qq4pc5nV9lChoBkdAlWv53HJcPmgHTegDaAhHQKd0ZRxcVxl1fZQoaAZHQJXizP8hs69oB03oA2gIR0Cndyi9RJmNdX2UKGgGR0CWbBctXgccaAdN6ANoCEdAp3p0c0cfeXV9lChoBkdAlCicTWXkYGgHTegDaAhHQKd7PPQfIS11fZQoaAZHQJOwRB8hLXdoB03oA2gIR0CngAH2ys0YdX2UKGgGR0CVaYSR8twraAdN6ANoCEdAp4LJ6Uqx1XV9lChoBkdAk1AfKISDiGgHTegDaAhHQKeGIWCVbA11fZQoaAZHQJLL1upCKJloB03oA2gIR0CnhvQqy4WldX2UKGgGR0CX/wYywfQsaAdN6ANoCEdAp4uLu2JBPnV9lChoBkdAlrZCI1tO22gHTegDaAhHQKeOZvtMPBl1fZQoaAZHQJEYuAavRqpoB03oA2gIR0CnkcAa3qiXdX2UKGgGR0CT25XL/0dzaAdN6ANoCEdAp5KP2Cdz4nV9lChoBkdAlW5T8xbjcWgHTegDaAhHQKeXN9Sde6Z1fZQoaAZHQJK3C7btZ3doB03oA2gIR0CnmgBFNL13dX2UKGgGR0CTRIpgCwKTaAdN6ANoCEdAp51LbDdgv3V9lChoBkdAli8g/X5FgGgHTegDaAhHQKeeHTGYKIB1fZQoaAZHQJU3zhjvuw5oB03oA2gIR0CnoyQoLG70dX2UKGgGR0CPHrTSb6P9aAdN6ANoCEdAp6YH2ugYg3V9lChoBkdAlGBaZhKDkGgHTegDaAhHQKepVwhGH591fZQoaAZHQIn89RxcVxloB03oA2gIR0CnqiHbZezEdX2UKGgGR0CWFa9s7+1jaAdN6ANoCEdAp67ZdKNADHV9lChoBkdAliK6brkbP2gHTegDaAhHQKexozk6tDF1fZQoaAZHQJZbEYht+CtoB03oA2gIR0CntO+vQnhLdX2UKGgGR0CR3fjQRf4RaAdN6ANoCEdAp7W9GwzLwHV9lChoBkdAlffdL127nWgHTegDaAhHQKe6cR3/xUh1fZQoaAZHQJWkNFNL129oB03oA2gIR0CnvUP8hs68dX2UKGgGR0CTaMPJJXhgaAdN6ANoCEdAp8CkcsDnvHV9lChoBkdAlpJIpMHryGgHTegDaAhHQKfBdHoX9BN1fZQoaAZHQJX9OG1x82JoB03oA2gIR0Cnxi63y7PIdX2UKGgGR0CVFlagVXV9aAdN6ANoCEdAp8kAo/iYLXV9lChoBkdAln/NMCcPOWgHTegDaAhHQKfMl7CzkZJ1fZQoaAZHQJWTt1gYxcpoB03oA2gIR0CnzWOM2m52dX2UKGgGR0CW65eGfwqiaAdN6ANoCEdAp9I5hx5s03V9lChoBkdAlSchNdqtYGgHTegDaAhHQKfVKbNKRMh1fZQoaAZHQJY8G3pfQa9oB03oA2gIR0Cn2INTLns+dX2UKGgGR0CVz/xesxO+aAdN6ANoCEdAp9lNnuiN83V9lChoBkdAl6Fo4VARkGgHTegDaAhHQKfePqsU7CB1fZQoaAZHQJXMR3W4EwFoB03oA2gIR0Cn4TYqG1x9dX2UKGgGR0CWC5B3A2ycaAdN6ANoCEdAp+SVc+qzaHV9lChoBkdAlxh/xMFlkGgHTegDaAhHQKflXXTVlPJ1fZQoaAZHQJQ/EdDIBBBoB03oA2gIR0Cn6gt/4IrwdX2UKGgGR0CRbN9G7SRbaAdN6ANoCEdAp+zplrdnCnV9lChoBkdAlA2e2NNrTGgHTegDaAhHQKfwPFrEcbR1fZQoaAZHQJEQ4V2zOX5oB03oA2gIR0Cn8QFaB7NTdX2UKGgGR0CQPJr2g398aAdN6ANoCEdAp/XMIomXxHV9lChoBkdAkD+donKGL2gHTegDaAhHQKf4wLYPGyZ1fZQoaAZHQJUjDRmbsnloB03oA2gIR0Cn/CCUornUdX2UKGgGR0CS146KLsKLaAdN6ANoCEdAp/zrZ39rGnV9lChoBkdAlVNUQoTfzmgHTegDaAhHQKgByfGuLaV1fZQoaAZHQJS/ZrZamoBoB03oA2gIR0CoBKJU5uIidX2UKGgGR0CWj5UqhDgJaAdN6ANoCEdAqAgJq0tyxXV9lChoBkdAlCKV4Pf8/GgHTegDaAhHQKgI1GuLaVV1fZQoaAZHQJY/gvUSZjRoB03oA2gIR0CoDZtH6MzedX2UKGgGR0CVomjIJZ4faAdN6ANoCEdAqBB4BgeA/nV9lChoBkdAk+6rn9vS+mgHTegDaAhHQKgT6x3V0911fZQoaAZHQJU+6p0fYBhoB03oA2gIR0CoFMDR+jM3dX2UKGgGR0CVw7wrUb1iaAdN6ANoCEdAqBl2etjkMnV9lChoBkdAlkK6/IsAemgHTegDaAhHQKgcdm6oVEd1fZQoaAZHQJWjGI/JNj9oB03oA2gIR0CoH+jr7fpEdX2UKGgGR0CTPGZIxxkvaAdN6ANoCEdAqCC1bzK9wnV9lChoBkdAlrQ8JQcghmgHTegDaAhHQKglc8OkLx91fZQoaAZHQJayk3Mpw0hoB03oA2gIR0CoKDuc2BJ7dX2UKGgGR0CWoAWVNYbLaAdN6ANoCEdAqCuCPsAvMHV9lChoBkdAlCUQ8W9DhWgHTegDaAhHQKgsUbutwJh1fZQoaAZHQJW1dVktmL9oB03oA2gIR0CoMRY+B6KMdX2UKGgGR0CU4EMxXXAeaAdN6ANoCEdAqDQEYKpkw3V9lChoBkdAlQySyprDZWgHTegDaAhHQKg3Z+mWMS91fZQoaAZHQJYWB/RVp9JoB03oA2gIR0CoODs5wOvudX2UKGgGR0CUzQLB9Cu2aAdN6ANoCEdAqDz3acqe9XV9lChoBkdAlACjHOryUmgHTegDaAhHQKg/yDPnjhl1fZQoaAZHQJQSRZgXuVpoB03oA2gIR0CoQwr0rbxmdX2UKGgGR0CTayMhX8wYaAdN6ANoCEdAqEPU4FRpDnV9lChoBkdAlPs61og3cmgHTegDaAhHQKhIZj6N2kl1fZQoaAZHQJSA0Cp3os9oB03oA2gIR0CoSz3RG+bmdX2UKGgGR0CTPe/o7muDaAdN6ANoCEdAqE6KOFQEZHV9lChoBkdAk8pagqVhTmgHTegDaAhHQKhPTG9YfXB1fZQoaAZHQI9I33ai9IxoB03oA2gIR0CoU/heokzHdX2UKGgGR0CQrib6xgRcaAdN6ANoCEdAqFbuMdcSoXV9lChoBkdAkquYUN8VpWgHTegDaAhHQKhaYdmQKa51fZQoaAZHQJRrSz7di2FoB03oA2gIR0CoWyWvStvGdX2UKGgGR0CWZ8EpiI+GaAdN6ANoCEdAqF/tMXaakXV9lChoBkdAlAs/hddE9mgHTegDaAhHQKhiwqmTC+F1fZQoaAZHQJYlkCOmzjZoB03oA2gIR0CoZg6JqIrOdX2UKGgGR0CTlr+cpb2UaAdN6ANoCEdAqGbWrU9ZBHV9lChoBkdAlYkSSeRPoGgHTegDaAhHQKhrmSAYpDx1fZQoaAZHQIyKroEB8x9oB03oA2gIR0Cobn39JjDsdX2UKGgGR0CTZeyOaOPvaAdN6ANoCEdAqHHctoSL63V9lChoBkdAkc1yZ4Oc2GgHTegDaAhHQKhysnF5v991fZQoaAZHQJN+XdrO7g9oB03oA2gIR0Cod6JZGKAKdX2UKGgGR0CTHdNH6MzeaAdN6ANoCEdAqHqQx+KCQXV9lChoBkdAktp8unMt9WgHTegDaAhHQKh99xeb/fh1fZQoaAZHQJOunEvTPSloB03oA2gIR0CofsWAf+0gdX2UKGgGR0CTNAH09QoDaAdN6ANoCEdAqIODrkbPyHV9lChoBkdAiGyROUMXrWgHTegDaAhHQKiGYEMb3oN1fZQoaAZHQJRF1c1O0sxoB03oA2gIR0CoibBB7eEadX2UKGgGR0CQdONzbN8maAdN6ANoCEdAqIp5wAEMb3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:886a87e56768edcdf79f7f17152840c63e77cbeb7eea23c9daf1b61abf47b5eb
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a59e9d34efdf3b16062f2fd8d5c6d25a522907d29389ac49376a92507bd3547b
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe84a5e44c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe84a5e4550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe84a5e45e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe84a5e4670>", "_build": "<function ActorCriticPolicy._build at 0x7fe84a5e4700>", "forward": "<function ActorCriticPolicy.forward at 0x7fe84a5e4790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe84a5e4820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe84a5e48b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe84a5e4940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe84a5e49d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe84a5e4a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe84a5e4af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe84a5e2180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675020928143752603, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOjBzr16ofM+k/2zPnuqEj95t5g/fiGNPxUanz/Vk1++9IuYvwGYCjxkLmg+ignRv7X8Er/rcVI/pkBvvxCal773JwS/R2jYvvtwTj/cu1Q+woSXP8M7Lr/O/He+k8WSPjp2jr+9+RI/u1mmPugXCT86J9s/byq1Pojs4D5SQwI/2PODvglFuD/y1RPAQd7PP7nkmL99oZ08MSKEvm9Yjz5jw70/Wu6Gv9tFKMBq17c+/tyVvzZC1r5z/LW/Ip8FQEv+nL8tPhw/ddOjP8lUgsAzA2Y/vfkSP037RMABBe+/V3ETPqwYOz9jye898NejvqymPT+DmaG/aOEmP8d5qz/6Otw/aXexvze+PD/YAou/pnHFvzx27jyFA0A/fkmDv8Wdcj/FVdQ9MX3yvjLHjT9TQ6A/LBu9Pl3La79SNMY+MwNmP9ry3r+7WaY+6BcJP9BWgD6F+XM+MdMCP3+gVT+dfB4/7OmOPxC9lD/SeLa+0c+3PrKOB741pw8/UubWv3qAZb/e3Xw+vyOTvxVSrL3Ji7+7D/mgvwuqUD9Hnwo9ib2iPyuai7+QMbM9DUobPzp2jr+9+RI/u1mmPugXCT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA+CL61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPjxkvAAAAACSTfO/AAAAANULorwAAAAAAP3jPwAAAADwWHQ8AAAAACTR6z8AAAAAicKMPQAAAAB5RPW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh8efNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBKtCL0AAAAAjGDevwAAAAA7XaA7AAAAAO1t+z8AAAAAwXiTPQAAAAA8LeQ/AAAAAIc4yL0AAAAA/3XqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUHOLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICTb7k9AAAAABCT3r8AAAAAKNt9PQAAAABon/o/AAAAAOO+hL0AAAAAXYbgPwAAAADwf+U8AAAAAOuN8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjS+k1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAxRmPQAAAACgdu+/AAAAAF9DHLwAAAAANVb9PwAAAADTpgw+AAAAANcy+T8AAAAAuTsHvAAAAABjN+u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcjMJa7mMiMAWyUTegDjAF0lEdAp2jFh7Vrh3V9lChoBkdAepHRzzVc2WgHTegDaAhHQKdro8QI2O11fZQoaAZHQJV4QERradtoB03oA2gIR0CnbtziCJ40dX2UKGgGR0CUxrjwQUYbaAdN6ANoCEdAp2+qq4pc5nV9lChoBkdAlWv53HJcPmgHTegDaAhHQKd0ZRxcVxl1fZQoaAZHQJXizP8hs69oB03oA2gIR0Cndyi9RJmNdX2UKGgGR0CWbBctXgccaAdN6ANoCEdAp3p0c0cfeXV9lChoBkdAlCicTWXkYGgHTegDaAhHQKd7PPQfIS11fZQoaAZHQJOwRB8hLXdoB03oA2gIR0CngAH2ys0YdX2UKGgGR0CVaYSR8twraAdN6ANoCEdAp4LJ6Uqx1XV9lChoBkdAk1AfKISDiGgHTegDaAhHQKeGIWCVbA11fZQoaAZHQJLL1upCKJloB03oA2gIR0CnhvQqy4WldX2UKGgGR0CX/wYywfQsaAdN6ANoCEdAp4uLu2JBPnV9lChoBkdAlrZCI1tO22gHTegDaAhHQKeOZvtMPBl1fZQoaAZHQJEYuAavRqpoB03oA2gIR0CnkcAa3qiXdX2UKGgGR0CT25XL/0dzaAdN6ANoCEdAp5KP2Cdz4nV9lChoBkdAlW5T8xbjcWgHTegDaAhHQKeXN9Sde6Z1fZQoaAZHQJK3C7btZ3doB03oA2gIR0CnmgBFNL13dX2UKGgGR0CTRIpgCwKTaAdN6ANoCEdAp51LbDdgv3V9lChoBkdAli8g/X5FgGgHTegDaAhHQKeeHTGYKIB1fZQoaAZHQJU3zhjvuw5oB03oA2gIR0CnoyQoLG70dX2UKGgGR0CPHrTSb6P9aAdN6ANoCEdAp6YH2ugYg3V9lChoBkdAlGBaZhKDkGgHTegDaAhHQKepVwhGH591fZQoaAZHQIn89RxcVxloB03oA2gIR0CnqiHbZezEdX2UKGgGR0CWFa9s7+1jaAdN6ANoCEdAp67ZdKNADHV9lChoBkdAliK6brkbP2gHTegDaAhHQKexozk6tDF1fZQoaAZHQJZbEYht+CtoB03oA2gIR0CntO+vQnhLdX2UKGgGR0CR3fjQRf4RaAdN6ANoCEdAp7W9GwzLwHV9lChoBkdAlffdL127nWgHTegDaAhHQKe6cR3/xUh1fZQoaAZHQJWkNFNL129oB03oA2gIR0CnvUP8hs68dX2UKGgGR0CTaMPJJXhgaAdN6ANoCEdAp8CkcsDnvHV9lChoBkdAlpJIpMHryGgHTegDaAhHQKfBdHoX9BN1fZQoaAZHQJX9OG1x82JoB03oA2gIR0Cnxi63y7PIdX2UKGgGR0CVFlagVXV9aAdN6ANoCEdAp8kAo/iYLXV9lChoBkdAln/NMCcPOWgHTegDaAhHQKfMl7CzkZJ1fZQoaAZHQJWTt1gYxcpoB03oA2gIR0CnzWOM2m52dX2UKGgGR0CW65eGfwqiaAdN6ANoCEdAp9I5hx5s03V9lChoBkdAlSchNdqtYGgHTegDaAhHQKfVKbNKRMh1fZQoaAZHQJY8G3pfQa9oB03oA2gIR0Cn2INTLns+dX2UKGgGR0CVz/xesxO+aAdN6ANoCEdAp9lNnuiN83V9lChoBkdAl6Fo4VARkGgHTegDaAhHQKfePqsU7CB1fZQoaAZHQJXMR3W4EwFoB03oA2gIR0Cn4TYqG1x9dX2UKGgGR0CWC5B3A2ycaAdN6ANoCEdAp+SVc+qzaHV9lChoBkdAlxh/xMFlkGgHTegDaAhHQKflXXTVlPJ1fZQoaAZHQJQ/EdDIBBBoB03oA2gIR0Cn6gt/4IrwdX2UKGgGR0CRbN9G7SRbaAdN6ANoCEdAp+zplrdnCnV9lChoBkdAlA2e2NNrTGgHTegDaAhHQKfwPFrEcbR1fZQoaAZHQJEQ4V2zOX5oB03oA2gIR0Cn8QFaB7NTdX2UKGgGR0CQPJr2g398aAdN6ANoCEdAp/XMIomXxHV9lChoBkdAkD+donKGL2gHTegDaAhHQKf4wLYPGyZ1fZQoaAZHQJUjDRmbsnloB03oA2gIR0Cn/CCUornUdX2UKGgGR0CS146KLsKLaAdN6ANoCEdAp/zrZ39rGnV9lChoBkdAlVNUQoTfzmgHTegDaAhHQKgByfGuLaV1fZQoaAZHQJS/ZrZamoBoB03oA2gIR0CoBKJU5uIidX2UKGgGR0CWj5UqhDgJaAdN6ANoCEdAqAgJq0tyxXV9lChoBkdAlCKV4Pf8/GgHTegDaAhHQKgI1GuLaVV1fZQoaAZHQJY/gvUSZjRoB03oA2gIR0CoDZtH6MzedX2UKGgGR0CVomjIJZ4faAdN6ANoCEdAqBB4BgeA/nV9lChoBkdAk+6rn9vS+mgHTegDaAhHQKgT6x3V0911fZQoaAZHQJU+6p0fYBhoB03oA2gIR0CoFMDR+jM3dX2UKGgGR0CVw7wrUb1iaAdN6ANoCEdAqBl2etjkMnV9lChoBkdAlkK6/IsAemgHTegDaAhHQKgcdm6oVEd1fZQoaAZHQJWjGI/JNj9oB03oA2gIR0CoH+jr7fpEdX2UKGgGR0CTPGZIxxkvaAdN6ANoCEdAqCC1bzK9wnV9lChoBkdAlrQ8JQcghmgHTegDaAhHQKglc8OkLx91fZQoaAZHQJayk3Mpw0hoB03oA2gIR0CoKDuc2BJ7dX2UKGgGR0CWoAWVNYbLaAdN6ANoCEdAqCuCPsAvMHV9lChoBkdAlCUQ8W9DhWgHTegDaAhHQKgsUbutwJh1fZQoaAZHQJW1dVktmL9oB03oA2gIR0CoMRY+B6KMdX2UKGgGR0CU4EMxXXAeaAdN6ANoCEdAqDQEYKpkw3V9lChoBkdAlQySyprDZWgHTegDaAhHQKg3Z+mWMS91fZQoaAZHQJYWB/RVp9JoB03oA2gIR0CoODs5wOvudX2UKGgGR0CUzQLB9Cu2aAdN6ANoCEdAqDz3acqe9XV9lChoBkdAlACjHOryUmgHTegDaAhHQKg/yDPnjhl1fZQoaAZHQJQSRZgXuVpoB03oA2gIR0CoQwr0rbxmdX2UKGgGR0CTayMhX8wYaAdN6ANoCEdAqEPU4FRpDnV9lChoBkdAlPs61og3cmgHTegDaAhHQKhIZj6N2kl1fZQoaAZHQJSA0Cp3os9oB03oA2gIR0CoSz3RG+bmdX2UKGgGR0CTPe/o7muDaAdN6ANoCEdAqE6KOFQEZHV9lChoBkdAk8pagqVhTmgHTegDaAhHQKhPTG9YfXB1fZQoaAZHQI9I33ai9IxoB03oA2gIR0CoU/heokzHdX2UKGgGR0CQrib6xgRcaAdN6ANoCEdAqFbuMdcSoXV9lChoBkdAkquYUN8VpWgHTegDaAhHQKhaYdmQKa51fZQoaAZHQJRrSz7di2FoB03oA2gIR0CoWyWvStvGdX2UKGgGR0CWZ8EpiI+GaAdN6ANoCEdAqF/tMXaakXV9lChoBkdAlAs/hddE9mgHTegDaAhHQKhiwqmTC+F1fZQoaAZHQJYlkCOmzjZoB03oA2gIR0CoZg6JqIrOdX2UKGgGR0CTlr+cpb2UaAdN6ANoCEdAqGbWrU9ZBHV9lChoBkdAlYkSSeRPoGgHTegDaAhHQKhrmSAYpDx1fZQoaAZHQIyKroEB8x9oB03oA2gIR0Cobn39JjDsdX2UKGgGR0CTZeyOaOPvaAdN6ANoCEdAqHHctoSL63V9lChoBkdAkc1yZ4Oc2GgHTegDaAhHQKhysnF5v991fZQoaAZHQJN+XdrO7g9oB03oA2gIR0Cod6JZGKAKdX2UKGgGR0CTHdNH6MzeaAdN6ANoCEdAqHqQx+KCQXV9lChoBkdAktp8unMt9WgHTegDaAhHQKh99xeb/fh1fZQoaAZHQJOunEvTPSloB03oA2gIR0CofsWAf+0gdX2UKGgGR0CTNAH09QoDaAdN6ANoCEdAqIODrkbPyHV9lChoBkdAiGyROUMXrWgHTegDaAhHQKiGYEMb3oN1fZQoaAZHQJRF1c1O0sxoB03oA2gIR0CoibBB7eEadX2UKGgGR0CQdONzbN8maAdN6ANoCEdAqIp5wAEMb3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c93d2c70cd5f7881b569de6018561d30dcf986707e57e001b34d537ad892ff8c
|
3 |
+
size 1009907
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1222.8153174507083, "std_reward": 161.79087812353, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-29T20:26:27.577862"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9056da638edc38c61bd89ed5efc61318e80cdc25f064316cf1a2b123f7af62e3
|
3 |
+
size 2136
|