khatkeashish commited on
Commit
5a24069
1 Parent(s): 96912e0

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.78 +/- 1.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b56b46b149844aac0b0b2392bdc1adbf098d79b8697f1a45217d9e6425063bb5
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc961618040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fc961611930>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676134869280044444,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOAwCP3QmbL1HciA/OAwCP3QmbL1HciA/OAwCP3QmbL1HciA/OAwCP3QmbL1HciA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQyFIvx1hVL/FBoo/O/0nP8X1Xb986ok/g6E0P7Dkuj983bQ/2F5UP0l9rr/sU9I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA4DAI/dCZsvUdyID+JlfU71KZ5u7oePDs4DAI/dCZsvUdyID+JlfU71KZ5u7oePDs4DAI/dCZsvUdyID+JlfU71KZ5u7oePDs4DAI/dCZsvUdyID+JlfU71KZ5u7oePDuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.50799894 -0.05765386 0.62674373]\n [ 0.50799894 -0.05765386 0.62674373]\n [ 0.50799894 -0.05765386 0.62674373]\n [ 0.50799894 -0.05765386 0.62674373]]",
60
+ "desired_goal": "[[-0.78175753 -0.82960683 1.0783316 ]\n [ 0.65620774 -0.8670314 1.0774684 ]\n [ 0.7055895 1.460104 1.4130092 ]\n [ 0.8295722 -1.3631984 1.6431861 ]]",
61
+ "observation": "[[ 0.50799894 -0.05765386 0.62674373 0.00749463 -0.00380938 0.00287048]\n [ 0.50799894 -0.05765386 0.62674373 0.00749463 -0.00380938 0.00287048]\n [ 0.50799894 -0.05765386 0.62674373 0.00749463 -0.00380938 0.00287048]\n [ 0.50799894 -0.05765386 0.62674373 0.00749463 -0.00380938 0.00287048]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAikyPvQExEz03D4c+m/W4PYZNAb2x6DY+G99HPeToBT70zXM+uWABPpBIDb7z+9s9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.06997021 0.03593541 0.26378796]\n [ 0.09031221 -0.03156807 0.17862202]\n [ 0.04879675 0.13077122 0.23809034]\n [ 0.12634553 -0.13797212 0.10741415]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoSsRqP5BE8CUhpRSlIwBbJRLMowBdJRHQKUnEZDzAet1fZQoaAZoCWgPQwh2MjhKXo0awJSGlFKUaBVLMmgWR0ClJryxJNCadX2UKGgGaAloD0MIaafmcoOBDcCUhpRSlGgVSzJoFkdApSZmpbUwz3V9lChoBmgJaA9DCEMc6+I2WgfAlIaUUpRoFUsyaBZHQKUmEE9Mbm51fZQoaAZoCWgPQwiMSX8vhWcDwJSGlFKUaBVLMmgWR0ClJ/srd30PdX2UKGgGaAloD0MIsTVbecnfBsCUhpRSlGgVSzJoFkdApSemcQRPGnV9lChoBmgJaA9DCB5Robq5iBDAlIaUUpRoFUsyaBZHQKUnUEwnH/91fZQoaAZoCWgPQwgP0lPkEBEfwJSGlFKUaBVLMmgWR0ClJvoJ7b+MdX2UKGgGaAloD0MIclDCTNsfCMCUhpRSlGgVSzJoFkdApSjVy925hHV9lChoBmgJaA9DCOsZwjHLXhjAlIaUUpRoFUsyaBZHQKUogOaOPvN1fZQoaAZoCWgPQwgW/DbEeB0XwJSGlFKUaBVLMmgWR0ClKCrMs6JZdX2UKGgGaAloD0MI0CUceouHFcCUhpRSlGgVSzJoFkdApSfUgIQe3nV9lChoBmgJaA9DCII7UKc8qhfAlIaUUpRoFUsyaBZHQKUps0Z3s5Z1fZQoaAZoCWgPQwgct5ifGxoFwJSGlFKUaBVLMmgWR0ClKV5jQRf4dX2UKGgGaAloD0MIXvI/+buXCsCUhpRSlGgVSzJoFkdApSkINRWLgnV9lChoBmgJaA9DCHuDL0ymKhTAlIaUUpRoFUsyaBZHQKUoseDnNgV1fZQoaAZoCWgPQwipT3KHTSQGwJSGlFKUaBVLMmgWR0ClKo2ovSMMdX2UKGgGaAloD0MI0bGDSlz3EMCUhpRSlGgVSzJoFkdApSo5AhStNnV9lChoBmgJaA9DCBjMXyFz5RDAlIaUUpRoFUsyaBZHQKUp4tPpIMB1fZQoaAZoCWgPQwivCWmNQScQwJSGlFKUaBVLMmgWR0ClKYyLyc0+dX2UKGgGaAloD0MIdbFppRAoDcCUhpRSlGgVSzJoFkdApStx/G2kSHV9lChoBmgJaA9DCIlDNpAuNv6/lIaUUpRoFUsyaBZHQKUrHd+ocaR1fZQoaAZoCWgPQwi1/MBVnkAHwJSGlFKUaBVLMmgWR0ClKsg1FYuCdX2UKGgGaAloD0MIO6buyi6YEcCUhpRSlGgVSzJoFkdApSpzHU+cIHV9lChoBmgJaA9DCI3ttaD3FhnAlIaUUpRoFUsyaBZHQKUsUhwEQoV1fZQoaAZoCWgPQwimme51Us8QwJSGlFKUaBVLMmgWR0ClK/02cawVdX2UKGgGaAloD0MI/G66ZYdIIsCUhpRSlGgVSzJoFkdApSunHT7VKHV9lChoBmgJaA9DCHk+A+rNiBvAlIaUUpRoFUsyaBZHQKUrUNgBtDV1fZQoaAZoCWgPQwgdjq7S3bUKwJSGlFKUaBVLMmgWR0ClLSr2YfGNdX2UKGgGaAloD0MIfnTqymc5B8CUhpRSlGgVSzJoFkdApSzWE4//vXV9lChoBmgJaA9DCNE7FXDPQxPAlIaUUpRoFUsyaBZHQKUsf/Q0GeN1fZQoaAZoCWgPQwgwuycPC1UFwJSGlFKUaBVLMmgWR0ClLCmyxA0LdX2UKGgGaAloD0MIbcg/M4gPHMCUhpRSlGgVSzJoFkdApS4Nj3Ehq3V9lChoBmgJaA9DCGVuvhHdMxfAlIaUUpRoFUsyaBZHQKUtuLdepn91fZQoaAZoCWgPQwhVF/Ayw9YWwJSGlFKUaBVLMmgWR0ClLWKWkadddX2UKGgGaAloD0MIJCh+jLkrEsCUhpRSlGgVSzJoFkdApS0MjzI3i3V9lChoBmgJaA9DCFh1Vgvs0QnAlIaUUpRoFUsyaBZHQKUu4iliz9l1fZQoaAZoCWgPQwg1Jy8yAZ8EwJSGlFKUaBVLMmgWR0ClLo1LzwtrdX2UKGgGaAloD0MIufscHy2eFsCUhpRSlGgVSzJoFkdApS43Ue+23XV9lChoBmgJaA9DCP/LtWgBqhXAlIaUUpRoFUsyaBZHQKUt4QzUI9l1fZQoaAZoCWgPQwgYtJCA0WUVwJSGlFKUaBVLMmgWR0ClMCUiILw4dX2UKGgGaAloD0MI205bI4IhHMCUhpRSlGgVSzJoFkdApS/QwK0D2nV9lChoBmgJaA9DCBQ+WwcHGwrAlIaUUpRoFUsyaBZHQKUvezNUwSJ1fZQoaAZoCWgPQwhCzCVV240JwJSGlFKUaBVLMmgWR0ClLyXcgyM2dX2UKGgGaAloD0MIbarukc31D8CUhpRSlGgVSzJoFkdApTGF8Rcu8XV9lChoBmgJaA9DCBghPNo4IhXAlIaUUpRoFUsyaBZHQKUxMZ2pyZN1fZQoaAZoCWgPQwgsf74tWEofwJSGlFKUaBVLMmgWR0ClMNwUYbbUdX2UKGgGaAloD0MIsU6V7xlZH8CUhpRSlGgVSzJoFkdApTCGxQizLXV9lChoBmgJaA9DCDj0Fg/v+RbAlIaUUpRoFUsyaBZHQKUy/CEYfnx1fZQoaAZoCWgPQwjEJced0jEfwJSGlFKUaBVLMmgWR0ClMqgB1cMWdX2UKGgGaAloD0MI1ZP5R99EDcCUhpRSlGgVSzJoFkdApTJSews5GXV9lChoBmgJaA9DCNaryOiAnCDAlIaUUpRoFUsyaBZHQKUx/MWXTmZ1fZQoaAZoCWgPQwiJKZFEL6MMwJSGlFKUaBVLMmgWR0ClNFyX2M86dX2UKGgGaAloD0MIbvse9debF8CUhpRSlGgVSzJoFkdApTQISamXPnV9lChoBmgJaA9DCBWt3AvMChPAlIaUUpRoFUsyaBZHQKUzsq1gH/t1fZQoaAZoCWgPQwiqZACo4kYMwJSGlFKUaBVLMmgWR0ClM1zuOS4fdX2UKGgGaAloD0MIsoLfhhhvEsCUhpRSlGgVSzJoFkdApTXRhDw6Q3V9lChoBmgJaA9DCNtrQe+NgQzAlIaUUpRoFUsyaBZHQKU1fUrkKeF1fZQoaAZoCWgPQwhLAtTUsgUewJSGlFKUaBVLMmgWR0ClNSfgBLf2dX2UKGgGaAloD0MI9aCgFK3sFsCUhpRSlGgVSzJoFkdApTTSTnq3VnV9lChoBmgJaA9DCFTFVPoJxwTAlIaUUpRoFUsyaBZHQKU3Wlw97nh1fZQoaAZoCWgPQwiVYkfjUJ8PwJSGlFKUaBVLMmgWR0ClNwdl2/zrdX2UKGgGaAloD0MI/tZOlITkCsCUhpRSlGgVSzJoFkdApTaxyEL6UXV9lChoBmgJaA9DCLr1mh4UxBHAlIaUUpRoFUsyaBZHQKU2XBeHBUJ1fZQoaAZoCWgPQwjaVx6kp6gUwJSGlFKUaBVLMmgWR0ClOMo2wV0tdX2UKGgGaAloD0MI5DJuaqAJFsCUhpRSlGgVSzJoFkdApTh2n2qT83V9lChoBmgJaA9DCAnAP6VK1A7AlIaUUpRoFUsyaBZHQKU4IQ2dd3V1fZQoaAZoCWgPQwhLeEKvP9kQwJSGlFKUaBVLMmgWR0ClN8xqoIfKdX2UKGgGaAloD0MIr1sExvrmA8CUhpRSlGgVSzJoFkdApTnzxy4nW3V9lChoBmgJaA9DCA9fJoqQahXAlIaUUpRoFUsyaBZHQKU5nvy9VWF1fZQoaAZoCWgPQwiYFYp0PwcUwJSGlFKUaBVLMmgWR0ClOUjrzGxVdX2UKGgGaAloD0MI2q1lMhz/E8CUhpRSlGgVSzJoFkdApTjymO2iL3V9lChoBmgJaA9DCOsaLQd6mBTAlIaUUpRoFUsyaBZHQKU6zBLwnYx1fZQoaAZoCWgPQwg2XOSerg4LwJSGlFKUaBVLMmgWR0ClOncq4H5adX2UKGgGaAloD0MI121Q+639DcCUhpRSlGgVSzJoFkdApTohDLKV6nV9lChoBmgJaA9DCG0csRafognAlIaUUpRoFUsyaBZHQKU5ysEq2Bt1fZQoaAZoCWgPQwimuKrsuyIFwJSGlFKUaBVLMmgWR0ClO8glnh86dX2UKGgGaAloD0MIf6SIDKv4C8CUhpRSlGgVSzJoFkdApTtzWy1NQHV9lChoBmgJaA9DCCo25nXEQSHAlIaUUpRoFUsyaBZHQKU7HUqhDgJ1fZQoaAZoCWgPQwiMZmX7kHcQwJSGlFKUaBVLMmgWR0ClOscjzI3jdX2UKGgGaAloD0MI6EzaVN1DHcCUhpRSlGgVSzJoFkdApTyxYkmhNHV9lChoBmgJaA9DCOFDiZY8HhTAlIaUUpRoFUsyaBZHQKU8XLXcxj91fZQoaAZoCWgPQwgmxFxStb0TwJSGlFKUaBVLMmgWR0ClPAbkwN9ZdX2UKGgGaAloD0MICcbBpWOOCMCUhpRSlGgVSzJoFkdApTuwna37UHV9lChoBmgJaA9DCNHN/kC5LQ/AlIaUUpRoFUsyaBZHQKU9i580DU51fZQoaAZoCWgPQwi0BBkBFc4EwJSGlFKUaBVLMmgWR0ClPTbCiyprdX2UKGgGaAloD0MI2spL/icfEcCUhpRSlGgVSzJoFkdApTzgptrKvHV9lChoBmgJaA9DCO26tyIxYQ/AlIaUUpRoFUsyaBZHQKU8in3ta6l1fZQoaAZoCWgPQwgoYhHDDsMEwJSGlFKUaBVLMmgWR0ClPn8POIIodX2UKGgGaAloD0MIniPyXUodFMCUhpRSlGgVSzJoFkdApT4qSeRPoHV9lChoBmgJaA9DCMto5POKBxXAlIaUUpRoFUsyaBZHQKU91ESdvsJ1fZQoaAZoCWgPQwhWD5iHTMkXwJSGlFKUaBVLMmgWR0ClPX4vvjOtdX2UKGgGaAloD0MIrn5skh9xBsCUhpRSlGgVSzJoFkdApT9U6q8143V9lChoBmgJaA9DCGTOM/Yl+w/AlIaUUpRoFUsyaBZHQKU/ABuGbkR1fZQoaAZoCWgPQwgiVRSvsjYDwJSGlFKUaBVLMmgWR0ClPqoMKCxvdX2UKGgGaAloD0MIlZuopbl1DsCUhpRSlGgVSzJoFkdApT5TwhGH6HV9lChoBmgJaA9DCAOWXMXiFw3AlIaUUpRoFUsyaBZHQKVANufmLcd1fZQoaAZoCWgPQwgleEMaFXgJwJSGlFKUaBVLMmgWR0ClP+IOYplSdX2UKGgGaAloD0MI+RVruMj9EMCUhpRSlGgVSzJoFkdApT+L8Jlar3V9lChoBmgJaA9DCBoUzQNYFBzAlIaUUpRoFUsyaBZHQKU/NZbILgJ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17698b5bc1af722a020b7519b57ddc716b07fc46e5f3541e888ad34a4c8d3977
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0444f61f97b654320a99a42c9783f79b26640550e25b3f6619121b9e42bb5e21
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc961618040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc961611930>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676134869280044444, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOAwCP3QmbL1HciA/OAwCP3QmbL1HciA/OAwCP3QmbL1HciA/OAwCP3QmbL1HciA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQyFIvx1hVL/FBoo/O/0nP8X1Xb986ok/g6E0P7Dkuj983bQ/2F5UP0l9rr/sU9I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA4DAI/dCZsvUdyID+JlfU71KZ5u7oePDs4DAI/dCZsvUdyID+JlfU71KZ5u7oePDs4DAI/dCZsvUdyID+JlfU71KZ5u7oePDs4DAI/dCZsvUdyID+JlfU71KZ5u7oePDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.50799894 -0.05765386 0.62674373]\n [ 0.50799894 -0.05765386 0.62674373]\n [ 0.50799894 -0.05765386 0.62674373]\n [ 0.50799894 -0.05765386 0.62674373]]", "desired_goal": "[[-0.78175753 -0.82960683 1.0783316 ]\n [ 0.65620774 -0.8670314 1.0774684 ]\n [ 0.7055895 1.460104 1.4130092 ]\n [ 0.8295722 -1.3631984 1.6431861 ]]", "observation": "[[ 0.50799894 -0.05765386 0.62674373 0.00749463 -0.00380938 0.00287048]\n [ 0.50799894 -0.05765386 0.62674373 0.00749463 -0.00380938 0.00287048]\n [ 0.50799894 -0.05765386 0.62674373 0.00749463 -0.00380938 0.00287048]\n [ 0.50799894 -0.05765386 0.62674373 0.00749463 -0.00380938 0.00287048]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAikyPvQExEz03D4c+m/W4PYZNAb2x6DY+G99HPeToBT70zXM+uWABPpBIDb7z+9s9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06997021 0.03593541 0.26378796]\n [ 0.09031221 -0.03156807 0.17862202]\n [ 0.04879675 0.13077122 0.23809034]\n [ 0.12634553 -0.13797212 0.10741415]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoSsRqP5BE8CUhpRSlIwBbJRLMowBdJRHQKUnEZDzAet1fZQoaAZoCWgPQwh2MjhKXo0awJSGlFKUaBVLMmgWR0ClJryxJNCadX2UKGgGaAloD0MIaafmcoOBDcCUhpRSlGgVSzJoFkdApSZmpbUwz3V9lChoBmgJaA9DCEMc6+I2WgfAlIaUUpRoFUsyaBZHQKUmEE9Mbm51fZQoaAZoCWgPQwiMSX8vhWcDwJSGlFKUaBVLMmgWR0ClJ/srd30PdX2UKGgGaAloD0MIsTVbecnfBsCUhpRSlGgVSzJoFkdApSemcQRPGnV9lChoBmgJaA9DCB5Robq5iBDAlIaUUpRoFUsyaBZHQKUnUEwnH/91fZQoaAZoCWgPQwgP0lPkEBEfwJSGlFKUaBVLMmgWR0ClJvoJ7b+MdX2UKGgGaAloD0MIclDCTNsfCMCUhpRSlGgVSzJoFkdApSjVy925hHV9lChoBmgJaA9DCOsZwjHLXhjAlIaUUpRoFUsyaBZHQKUogOaOPvN1fZQoaAZoCWgPQwgW/DbEeB0XwJSGlFKUaBVLMmgWR0ClKCrMs6JZdX2UKGgGaAloD0MI0CUceouHFcCUhpRSlGgVSzJoFkdApSfUgIQe3nV9lChoBmgJaA9DCII7UKc8qhfAlIaUUpRoFUsyaBZHQKUps0Z3s5Z1fZQoaAZoCWgPQwgct5ifGxoFwJSGlFKUaBVLMmgWR0ClKV5jQRf4dX2UKGgGaAloD0MIXvI/+buXCsCUhpRSlGgVSzJoFkdApSkINRWLgnV9lChoBmgJaA9DCHuDL0ymKhTAlIaUUpRoFUsyaBZHQKUoseDnNgV1fZQoaAZoCWgPQwipT3KHTSQGwJSGlFKUaBVLMmgWR0ClKo2ovSMMdX2UKGgGaAloD0MI0bGDSlz3EMCUhpRSlGgVSzJoFkdApSo5AhStNnV9lChoBmgJaA9DCBjMXyFz5RDAlIaUUpRoFUsyaBZHQKUp4tPpIMB1fZQoaAZoCWgPQwivCWmNQScQwJSGlFKUaBVLMmgWR0ClKYyLyc0+dX2UKGgGaAloD0MIdbFppRAoDcCUhpRSlGgVSzJoFkdApStx/G2kSHV9lChoBmgJaA9DCIlDNpAuNv6/lIaUUpRoFUsyaBZHQKUrHd+ocaR1fZQoaAZoCWgPQwi1/MBVnkAHwJSGlFKUaBVLMmgWR0ClKsg1FYuCdX2UKGgGaAloD0MIO6buyi6YEcCUhpRSlGgVSzJoFkdApSpzHU+cIHV9lChoBmgJaA9DCI3ttaD3FhnAlIaUUpRoFUsyaBZHQKUsUhwEQoV1fZQoaAZoCWgPQwimme51Us8QwJSGlFKUaBVLMmgWR0ClK/02cawVdX2UKGgGaAloD0MI/G66ZYdIIsCUhpRSlGgVSzJoFkdApSunHT7VKHV9lChoBmgJaA9DCHk+A+rNiBvAlIaUUpRoFUsyaBZHQKUrUNgBtDV1fZQoaAZoCWgPQwgdjq7S3bUKwJSGlFKUaBVLMmgWR0ClLSr2YfGNdX2UKGgGaAloD0MIfnTqymc5B8CUhpRSlGgVSzJoFkdApSzWE4//vXV9lChoBmgJaA9DCNE7FXDPQxPAlIaUUpRoFUsyaBZHQKUsf/Q0GeN1fZQoaAZoCWgPQwgwuycPC1UFwJSGlFKUaBVLMmgWR0ClLCmyxA0LdX2UKGgGaAloD0MIbcg/M4gPHMCUhpRSlGgVSzJoFkdApS4Nj3Ehq3V9lChoBmgJaA9DCGVuvhHdMxfAlIaUUpRoFUsyaBZHQKUtuLdepn91fZQoaAZoCWgPQwhVF/Ayw9YWwJSGlFKUaBVLMmgWR0ClLWKWkadddX2UKGgGaAloD0MIJCh+jLkrEsCUhpRSlGgVSzJoFkdApS0MjzI3i3V9lChoBmgJaA9DCFh1Vgvs0QnAlIaUUpRoFUsyaBZHQKUu4iliz9l1fZQoaAZoCWgPQwg1Jy8yAZ8EwJSGlFKUaBVLMmgWR0ClLo1LzwtrdX2UKGgGaAloD0MIufscHy2eFsCUhpRSlGgVSzJoFkdApS43Ue+23XV9lChoBmgJaA9DCP/LtWgBqhXAlIaUUpRoFUsyaBZHQKUt4QzUI9l1fZQoaAZoCWgPQwgYtJCA0WUVwJSGlFKUaBVLMmgWR0ClMCUiILw4dX2UKGgGaAloD0MI205bI4IhHMCUhpRSlGgVSzJoFkdApS/QwK0D2nV9lChoBmgJaA9DCBQ+WwcHGwrAlIaUUpRoFUsyaBZHQKUvezNUwSJ1fZQoaAZoCWgPQwhCzCVV240JwJSGlFKUaBVLMmgWR0ClLyXcgyM2dX2UKGgGaAloD0MIbarukc31D8CUhpRSlGgVSzJoFkdApTGF8Rcu8XV9lChoBmgJaA9DCBghPNo4IhXAlIaUUpRoFUsyaBZHQKUxMZ2pyZN1fZQoaAZoCWgPQwgsf74tWEofwJSGlFKUaBVLMmgWR0ClMNwUYbbUdX2UKGgGaAloD0MIsU6V7xlZH8CUhpRSlGgVSzJoFkdApTCGxQizLXV9lChoBmgJaA9DCDj0Fg/v+RbAlIaUUpRoFUsyaBZHQKUy/CEYfnx1fZQoaAZoCWgPQwjEJced0jEfwJSGlFKUaBVLMmgWR0ClMqgB1cMWdX2UKGgGaAloD0MI1ZP5R99EDcCUhpRSlGgVSzJoFkdApTJSews5GXV9lChoBmgJaA9DCNaryOiAnCDAlIaUUpRoFUsyaBZHQKUx/MWXTmZ1fZQoaAZoCWgPQwiJKZFEL6MMwJSGlFKUaBVLMmgWR0ClNFyX2M86dX2UKGgGaAloD0MIbvse9debF8CUhpRSlGgVSzJoFkdApTQISamXPnV9lChoBmgJaA9DCBWt3AvMChPAlIaUUpRoFUsyaBZHQKUzsq1gH/t1fZQoaAZoCWgPQwiqZACo4kYMwJSGlFKUaBVLMmgWR0ClM1zuOS4fdX2UKGgGaAloD0MIsoLfhhhvEsCUhpRSlGgVSzJoFkdApTXRhDw6Q3V9lChoBmgJaA9DCNtrQe+NgQzAlIaUUpRoFUsyaBZHQKU1fUrkKeF1fZQoaAZoCWgPQwhLAtTUsgUewJSGlFKUaBVLMmgWR0ClNSfgBLf2dX2UKGgGaAloD0MI9aCgFK3sFsCUhpRSlGgVSzJoFkdApTTSTnq3VnV9lChoBmgJaA9DCFTFVPoJxwTAlIaUUpRoFUsyaBZHQKU3Wlw97nh1fZQoaAZoCWgPQwiVYkfjUJ8PwJSGlFKUaBVLMmgWR0ClNwdl2/zrdX2UKGgGaAloD0MI/tZOlITkCsCUhpRSlGgVSzJoFkdApTaxyEL6UXV9lChoBmgJaA9DCLr1mh4UxBHAlIaUUpRoFUsyaBZHQKU2XBeHBUJ1fZQoaAZoCWgPQwjaVx6kp6gUwJSGlFKUaBVLMmgWR0ClOMo2wV0tdX2UKGgGaAloD0MI5DJuaqAJFsCUhpRSlGgVSzJoFkdApTh2n2qT83V9lChoBmgJaA9DCAnAP6VK1A7AlIaUUpRoFUsyaBZHQKU4IQ2dd3V1fZQoaAZoCWgPQwhLeEKvP9kQwJSGlFKUaBVLMmgWR0ClN8xqoIfKdX2UKGgGaAloD0MIr1sExvrmA8CUhpRSlGgVSzJoFkdApTnzxy4nW3V9lChoBmgJaA9DCA9fJoqQahXAlIaUUpRoFUsyaBZHQKU5nvy9VWF1fZQoaAZoCWgPQwiYFYp0PwcUwJSGlFKUaBVLMmgWR0ClOUjrzGxVdX2UKGgGaAloD0MI2q1lMhz/E8CUhpRSlGgVSzJoFkdApTjymO2iL3V9lChoBmgJaA9DCOsaLQd6mBTAlIaUUpRoFUsyaBZHQKU6zBLwnYx1fZQoaAZoCWgPQwg2XOSerg4LwJSGlFKUaBVLMmgWR0ClOncq4H5adX2UKGgGaAloD0MI121Q+639DcCUhpRSlGgVSzJoFkdApTohDLKV6nV9lChoBmgJaA9DCG0csRafognAlIaUUpRoFUsyaBZHQKU5ysEq2Bt1fZQoaAZoCWgPQwimuKrsuyIFwJSGlFKUaBVLMmgWR0ClO8glnh86dX2UKGgGaAloD0MIf6SIDKv4C8CUhpRSlGgVSzJoFkdApTtzWy1NQHV9lChoBmgJaA9DCCo25nXEQSHAlIaUUpRoFUsyaBZHQKU7HUqhDgJ1fZQoaAZoCWgPQwiMZmX7kHcQwJSGlFKUaBVLMmgWR0ClOscjzI3jdX2UKGgGaAloD0MI6EzaVN1DHcCUhpRSlGgVSzJoFkdApTyxYkmhNHV9lChoBmgJaA9DCOFDiZY8HhTAlIaUUpRoFUsyaBZHQKU8XLXcxj91fZQoaAZoCWgPQwgmxFxStb0TwJSGlFKUaBVLMmgWR0ClPAbkwN9ZdX2UKGgGaAloD0MICcbBpWOOCMCUhpRSlGgVSzJoFkdApTuwna37UHV9lChoBmgJaA9DCNHN/kC5LQ/AlIaUUpRoFUsyaBZHQKU9i580DU51fZQoaAZoCWgPQwi0BBkBFc4EwJSGlFKUaBVLMmgWR0ClPTbCiyprdX2UKGgGaAloD0MI2spL/icfEcCUhpRSlGgVSzJoFkdApTzgptrKvHV9lChoBmgJaA9DCO26tyIxYQ/AlIaUUpRoFUsyaBZHQKU8in3ta6l1fZQoaAZoCWgPQwgoYhHDDsMEwJSGlFKUaBVLMmgWR0ClPn8POIIodX2UKGgGaAloD0MIniPyXUodFMCUhpRSlGgVSzJoFkdApT4qSeRPoHV9lChoBmgJaA9DCMto5POKBxXAlIaUUpRoFUsyaBZHQKU91ESdvsJ1fZQoaAZoCWgPQwhWD5iHTMkXwJSGlFKUaBVLMmgWR0ClPX4vvjOtdX2UKGgGaAloD0MIrn5skh9xBsCUhpRSlGgVSzJoFkdApT9U6q8143V9lChoBmgJaA9DCGTOM/Yl+w/AlIaUUpRoFUsyaBZHQKU/ABuGbkR1fZQoaAZoCWgPQwgiVRSvsjYDwJSGlFKUaBVLMmgWR0ClPqoMKCxvdX2UKGgGaAloD0MIlZuopbl1DsCUhpRSlGgVSzJoFkdApT5TwhGH6HV9lChoBmgJaA9DCAOWXMXiFw3AlIaUUpRoFUsyaBZHQKVANufmLcd1fZQoaAZoCWgPQwgleEMaFXgJwJSGlFKUaBVLMmgWR0ClP+IOYplSdX2UKGgGaAloD0MI+RVruMj9EMCUhpRSlGgVSzJoFkdApT+L8Jlar3V9lChoBmgJaA9DCBoUzQNYFBzAlIaUUpRoFUsyaBZHQKU/NZbILgJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (874 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.776036012452096, "std_reward": 1.4088694643102528, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T17:46:35.121014"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bab05520c937b3301aec917c94ce3f83348da3afe9350dc9ac0e3df244b0fcf9
3
+ size 3056