Llama_Vision / handler.py
kiddobellamy's picture
Update handler.py
6cf0252 verified
raw
history blame
2.07 kB
import torch
from transformers import LlamaForCausalLM, AutoTokenizer, AutoProcessor
from PIL import Image
import base64
import io
# Load model and processor globally
model_id = "kiddobellamy/Llama_Vision"
# Load the model
model = LlamaForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16, # Use torch.float16 if bfloat16 is not supported
device_map="auto",
)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load the processor if needed (for image processing)
processor = AutoProcessor.from_pretrained(model_id)
def handler(event, context):
try:
# Parse inputs
inputs = event.get('inputs', {})
image_base64 = inputs.get('image')
prompt = inputs.get('prompt', '')
if not image_base64 or not prompt:
return {'error': 'Both "image" and "prompt" are required in inputs.'}
# Decode the base64 image
image_bytes = base64.b64decode(image_base64)
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
# Process image if necessary (depends on your model)
# Assuming your processor handles image preprocessing
image_inputs = processor(images=image, return_tensors="pt").to(model.device)
# Tokenize the prompt
text_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Combine image and text inputs if required by your model
# This step depends on how your model processes images and text together
inputs = {
'input_ids': text_inputs['input_ids'],
'attention_mask': text_inputs['attention_mask'],
# Include image inputs as required
# 'pixel_values': image_inputs['pixel_values'],
}
# Generate output
output_ids = model.generate(**inputs, max_new_tokens=50)
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Return the result
return {'generated_text': generated_text}
except Exception as e:
return {'error': str(e)}
#111