kingabzpro
commited on
Upload Eval
Browse files
README.md
CHANGED
@@ -23,10 +23,10 @@ model-index:
|
|
23 |
args: pa-IN # Optional. Example: zh-CN
|
24 |
metrics:
|
25 |
- type: wer # Required. Example: wer
|
26 |
-
value:
|
27 |
-
name: Test WER # Optional. Example: Test WER
|
28 |
- type: cer # Required. Example: wer
|
29 |
-
value:
|
30 |
name: Test CER # Optional. Example: Test WER
|
31 |
|
32 |
---
|
@@ -42,7 +42,32 @@ It achieves the following results on the evaluation set:
|
|
42 |
- Wer: 0.4939
|
43 |
- Cer: 0.2238
|
44 |
|
|
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
### Training hyperparameters
|
48 |
|
|
|
23 |
args: pa-IN # Optional. Example: zh-CN
|
24 |
metrics:
|
25 |
- type: wer # Required. Example: wer
|
26 |
+
value: 36.02 # Required. Example: 20.90
|
27 |
+
name: Test WER With LM # Optional. Example: Test WER
|
28 |
- type: cer # Required. Example: wer
|
29 |
+
value: 12.81 With LM # Required. Example: 20.90
|
30 |
name: Test CER # Optional. Example: Test WER
|
31 |
|
32 |
---
|
|
|
42 |
- Wer: 0.4939
|
43 |
- Cer: 0.2238
|
44 |
|
45 |
+
#### Evaluation Commands
|
46 |
+
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
|
47 |
|
48 |
+
```bash
|
49 |
+
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-53-punjabi --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test
|
50 |
+
```
|
51 |
+
|
52 |
+
### Inference With LM
|
53 |
+
|
54 |
+
```python
|
55 |
+
import torch
|
56 |
+
from datasets import load_dataset
|
57 |
+
from transformers import AutoModelForCTC, AutoProcessor
|
58 |
+
import torchaudio.functional as F
|
59 |
+
model_id = "kingabzpro/wav2vec2-large-xlsr-53-punjabi"
|
60 |
+
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "pa-IN", split="test", streaming=True, use_auth_token=True))
|
61 |
+
sample = next(sample_iter)
|
62 |
+
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
|
63 |
+
model = AutoModelForCTC.from_pretrained(model_id)
|
64 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
65 |
+
input_values = processor(resampled_audio, return_tensors="pt").input_values
|
66 |
+
with torch.no_grad():
|
67 |
+
logits = model(input_values).logits
|
68 |
+
transcription = processor.batch_decode(logits.numpy()).text
|
69 |
+
|
70 |
+
```
|
71 |
|
72 |
### Training hyperparameters
|
73 |
|