--- language: - pa-IN license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer model-index: - name: wav2vec2-large-xlsr-53-punjabi results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Speech Recognition # Optional. Example: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: common-voice # Required. Example: Common Voice zh-CN args: pa-IN # Optional. Example: zh-CN metrics: - type: wer # Required. Example: wer value: 39.42 # Required. Example: 20.90 name: Test WER # Optional. Example: Test WER args: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30 - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order - type: cer # Required. Example: wer value: 12.99 # Required. Example: 20.90 name: Test CER # Optional. Example: Test WER args: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30 - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order --- # wav2vec2-large-xlsr-53-punjabi This model is a fine-tuned version of [manandey/wav2vec2-large-xlsr-punjabi](https://huggingface.co/manandey/wav2vec2-large-xlsr-punjabi) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6752 - Wer: 0.3942 - Cer: 0.1299 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.8899 | 4.16 | 100 | 0.5338 | 0.4233 | 0.1394 | | 0.3652 | 8.33 | 200 | 0.5759 | 0.4192 | 0.1349 | | 0.248 | 12.49 | 300 | 0.6309 | 0.4102 | 0.1327 | | 0.1898 | 16.65 | 400 | 0.6441 | 0.4007 | 0.1351 | | 0.1486 | 20.82 | 500 | 0.6790 | 0.4044 | 0.1393 | | 0.1245 | 24.98 | 600 | 0.6869 | 0.3987 | 0.1309 | | 0.1085 | 29.16 | 700 | 0.6752 | 0.3942 | 0.1299 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3