--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_mehdi_as_Multi_token results: [] --- # speecht5_mehdi_as_Multi_token This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.6154 | 3.5556 | 100 | 0.5500 | | 0.5594 | 7.1111 | 200 | 0.5302 | | 0.5378 | 10.6667 | 300 | 0.5179 | | 0.5086 | 14.2222 | 400 | 0.4924 | | 0.4923 | 17.7778 | 500 | 0.4855 | | 0.4871 | 21.3333 | 600 | 0.4844 | | 0.4791 | 24.8889 | 700 | 0.4809 | | 0.4724 | 28.4444 | 800 | 0.4793 | | 0.4609 | 32.0 | 900 | 0.4837 | | 0.4583 | 35.5556 | 1000 | 0.4877 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3