File size: 2,831 Bytes
4f00994
 
 
989c563
4f00994
 
 
 
 
 
 
 
989c563
 
 
 
4f00994
 
989c563
4f00994
989c563
4f00994
989c563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f00994
 
 
989c563
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
language:
- en
- hi
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
datasets:
- yahma/alpaca-cleaned
- ravithejads/samvaad-hi-filtered
- HydraIndicLM/hindi_alpaca_dolly_67k
---

# TinyLlama-1.1B-Hinglish-LORA-v1.0 model

- **Developed by:** [Kiran Kunapuli](https://www.linkedin.com/in/kirankunapuli/)
- **License:** apache-2.0
- **Finetuned from model:** TinyLlama/TinyLlama-1.1B-Chat-v1.0
- **Model config:**
  ```python
    model = FastLanguageModel.get_peft_model(
    model,
    r = 64, 
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 128,
    lora_dropout = 0, 
    bias = "none",   
    use_gradient_checkpointing = True, 
    random_state = 42,
    use_rslora = True,  
    loftq_config = None, 
    )
  ```
- **Training parameters:**
  ```python
    trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = dataset,
    dataset_text_field = "text",
    max_seq_length = max_seq_length,
    dataset_num_proc = 2,
    packing = True, 
    args = TrainingArguments(
        per_device_train_batch_size = 12,
        gradient_accumulation_steps = 16,
        warmup_ratio = 0.1,
        num_train_epochs = 1,
        learning_rate = 2e-4,
        fp16 = not torch.cuda.is_bf16_supported(),
        bf16 = torch.cuda.is_bf16_supported(),
        logging_steps = 1,
        optim = "paged_adamw_32bit",
        weight_decay = 0.001,
        lr_scheduler_type = "cosine",
        seed = 42,
        output_dir = "outputs",
        report_to = "wandb",
      ),
    )
  ```
- **Training details:**
  ```
  ==((====))==  Unsloth - 2x faster free finetuning | Num GPUs = 1
     \\   /|    Num examples = 15,464 | Num Epochs = 1
  O^O/ \_/ \    Batch size per device = 12 | Gradient Accumulation steps = 16
  \        /    Total batch size = 192 | Total steps = 80
   "-____-"     Number of trainable parameters = 50,462,720

  GPU = NVIDIA GeForce RTX 3090. Max memory = 24.0 GB.
  Total time taken for 1 epoch - 2h:35m:28s
  9443.5288 seconds used for training.
  157.39 minutes used for training.
  Peak reserved memory = 17.641 GB.
  Peak reserved memory for training = 15.344 GB.
  Peak reserved memory % of max memory = 73.504 %.
  Peak reserved memory for training % of max memory = 63.933 %.
  ```

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

**[NOTE]** TinyLlama's internal maximum sequence length is 2048. We use RoPE Scaling to extend it to 4096 with Unsloth!

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)