--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en - ja datasets: - elyza/ELYZA-tasks-100 --- # Uploaded model - **Developed by:** kittokito - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Useage 以下のコードを Google Colab で実行してください。 ``` python # 必要なライブラリをインストール !pip install unsloth !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install -U torch !pip install -U peft # 必要なライブラリを読み込み from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm # ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。 model_id = "llm-jp/llm-jp-3-13b" adapter_id = "kittokito/llm-jp-3-13b-it-202412170007" from google.colab import userdata HF_TOKEN=userdata.get('HF_TOKEN') # unslothのFastLanguageModelで元のモデルをロード。 dtype = None # Noneにしておけば自動で設定 load_in_4bit = True # 4bit量子化でモデルのパラメーターをダウンロード model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, ) # 元のモデルにLoRAのアダプタを統合。 model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) # タスクとなるデータの読み込み。 # 事前にデータをアップロードしてください。 datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # モデルを用いてタスクの推論。 # 推論するためにモデルのモードを変更 FastLanguageModel.for_inference(model) results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) # 結果をjsonlで保存。 with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ``` # Datasets ## Instruction Tuning このモデルは以下のデータセットでファインチューニングされています。 | **Language** | **Dataset** | **Description** | |--------------|----------------------------------------------|-------------------------------------------------------------------------------| | Japanese | [ichikara-instruction-003-001-1.json](http://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/) | A manually constructed instruction dataset. | | | [Elyza-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100) | A model evaluation dataset consisting of 100 Japanese tasks that include complex instructions and advanced reasoning. | | Synthesized data from Elyza-tasks-100 | Synthesized data from Elyza-tasks-100 by using LLM (Mixtral-8x22B). |