File size: 1,608 Bytes
37fd388 204530b 37fd388 204530b 37fd388 204530b 37fd388 204530b 37fd388 204530b 7d12a2e 37fd388 204530b 37fd388 204530b 37fd388 204530b 37fd388 204530b 37fd388 204530b 37fd388 204530b 37fd388 204530b 37fd388 204530b e8f608c 204530b e8f608c 4ab1fb8 37fd388 204530b 37fd388 4ab1fb8 7d12a2e 37fd388 204530b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: peft
license: gemma
base_model: google/gemma-7b
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
model-index:
- name: gemma7b-lora-alpaca-11-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma7b-lora-alpaca-11-v1
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6532
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6467 | 1.0 | 140 | 1.6532 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |