File size: 1,608 Bytes
37fd388
204530b
 
37fd388
 
 
 
204530b
 
 
 
 
 
37fd388
 
204530b
 
37fd388
204530b
37fd388
204530b
 
7d12a2e
37fd388
204530b
37fd388
204530b
37fd388
204530b
37fd388
204530b
37fd388
204530b
37fd388
204530b
37fd388
204530b
 
 
37fd388
204530b
e8f608c
204530b
 
 
 
 
 
 
 
 
e8f608c
 
4ab1fb8
37fd388
204530b
37fd388
4ab1fb8
 
7d12a2e
37fd388
 
204530b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: peft
license: gemma
base_model: google/gemma-7b
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
model-index:
- name: gemma7b-lora-alpaca-11-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gemma7b-lora-alpaca-11-v1

This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6532

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6467        | 1.0   | 140  | 1.6532          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3