--- library_name: peft license: gemma base_model: google/gemma-7b tags: - trl - sft - generated_from_trainer datasets: - generator model-index: - name: gemma7b-lora-alpaca-11-v1 results: [] --- # gemma7b-lora-alpaca-11-v1 This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.6643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9056 | 0.9924 | 65 | 2.6113 | | 1.8271 | 2.0 | 131 | 1.8230 | | 1.7019 | 2.9924 | 196 | 1.7041 | | 1.7024 | 4.0 | 262 | 1.6962 | | 1.6463 | 4.9618 | 325 | 1.6643 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3