Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.22 +/- 0.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6972b44eb25fdb20f714b645f4198acd4cddddf843f726812bac5147cfa1fbdd
|
3 |
+
size 108299
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78b3140b37f0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x78b3140ab7c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1698887772738336119,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwOoXv99I6z4kQ6k+3nvbvbFN+L6OWmu+qDKOPj+HErpSZd8+rI50v/sGoT+BWbO/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6X4uvwq3Qz9L3ZQ/nsOJv3lRsb8Vw5S/yJS+P3Dvrj/XQm8/kPW+vl7SJz/TbIO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADA6he/30jrPiRDqT6dx0S/uNfWP208Yj/ee9u9sU34vo5aa74iM+q/4sXav1e1rr+oMo4+P4cSulJl3z55q/w+edOIOTeSxz6sjnS/+wahP4FZs7/bMHa/s9sYP0Ndc7+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-5.9342575e-01 4.5954034e-01 3.3059037e-01]\n [-1.0716985e-01 -4.8496774e-01 -2.2983763e-01]\n [ 2.7773023e-01 -5.5896112e-04 4.3631989e-01]\n [-9.5530200e-01 1.2580255e+00 -1.4011689e+00]]",
|
34 |
+
"desired_goal": "[[-0.681624 0.7645117 1.1630033 ]\n [-1.0762823 -1.3852988 -1.1622034 ]\n [ 1.4889154 1.366682 0.93461365]\n [-0.37296724 0.6555537 -1.0267586 ]]",
|
35 |
+
"observation": "[[-5.9342575e-01 4.5954034e-01 3.3059037e-01 -7.6867086e-01\n 1.6784582e+00 8.8373452e-01]\n [-1.0716985e-01 -4.8496774e-01 -2.2983763e-01 -1.8296854e+00\n -1.7091639e+00 -1.3649091e+00]\n [ 2.7773023e-01 -5.5896112e-04 4.3631989e-01 4.9349573e-01\n 2.6097501e-04 3.8978741e-01]\n [-9.5530200e-01 1.2580255e+00 -1.4011689e+00 -9.6168298e-01\n 5.9710234e-01 -9.5064181e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApEsDPsqWDL5/plI9k7MEvOp9+Tgkcfw9aKDhPQFCrDzwVTU+T5HYvaga8r0EnxU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 1.28218234e-01 -1.37293965e-01 5.14283143e-02]\n [-8.09945446e-03 1.18966986e-04 1.23262674e-01]\n [ 1.10169232e-01 2.10275669e-02 1.77085638e-01]\n [-1.05745904e-01 -1.18214905e-01 1.46114409e-01]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9OVE/jbSJGMAWyUSwOMAXSUR0CnIxE25xzadX2UKGgGR7/J6Ww/xDsuaAdLA2gIR0CnIVNJOFg2dX2UKGgGR7/EFMZgogFHaAdLA2gIR0CnIJa9sabXdX2UKGgGR7/JRhMJx//eaAdLA2gIR0CnIyMbFS88dX2UKGgGR7+/GACnxaxHaAdLAmgIR0CnIWCY1He8dX2UKGgGR7+eU2UB4lhPaAdLAWgIR0CnIyglfJFLdX2UKGgGR7/QQTEit7rtaAdLA2gIR0CnIKjeCTUzdX2UKGgGR7/NhmXgLqlhaAdLA2gIR0CnIzilabF1dX2UKGgGR7/QDeTFERapaAdLBGgIR0CnIXWszVMFdX2UKGgGR7/E7/XGwRoRaAdLAmgIR0CnI0FnAZbZdX2UKGgGR7/GAEt/WlMzaAdLA2gIR0CnIYKxLTQWdX2UKGgGR7+4xDb8FY+0aAdLAmgIR0CnI0pLEk0KdX2UKGgGR7/pj0cwQDmsaAdLCGgIR0CnINJCrtE5dX2UKGgGR7/N9/BnBciXaAdLA2gIR0CnI1qGlANYdX2UKGgGR7/UMERradtmaAdLBGgIR0CnIZeGXXyzdX2UKGgGR7+6ee4Cp3otaAdLAmgIR0CnINr8aXKKdX2UKGgGR7/DB/qgRK6GaAdLAmgIR0CnI2Qc5sCUdX2UKGgGR7/QpcX3xnWbaAdLA2gIR0CnIanE/B3zdX2UKGgGR7/C9WZJCjUNaAdLAmgIR0CnI3Ha37UHdX2UKGgGR7/WFWn0kGA1aAdLBGgIR0CnIPJYkmhNdX2UKGgGR7/ARzRx95QhaAdLAmgIR0CnI3stkFwDdX2UKGgGR7/MItUXHim3aAdLA2gIR0CnIbhpQDV6dX2UKGgGR7+9ZmqYJE6UaAdLAmgIR0CnIPviLl3hdX2UKGgGR7/IJDVpblijaAdLA2gIR0CnI4wQ176YdX2UKGgGR7/SRNh3JPqLaAdLA2gIR0CnIck0Jng6dX2UKGgGR7/PgUDdP+GXaAdLA2gIR0CnIddBKL88dX2UKGgGR7/l7wSamXPaaAdLCGgIR0CnIShsANobdX2UKGgGR7/eZ39rGipOaAdLBmgIR0CnI6zYEnstdX2UKGgGR7/WgQpWmxdIaAdLA2gIR0CnIeo4EOiGdX2UKGgGR7+XK8tf5ULlaAdLAWgIR0CnI7Hqmj0udX2UKGgGR7/KoF3Y+Sr6aAdLA2gIR0CnIfwdS2pidX2UKGgGR7/Yncclw97oaAdLBGgIR0CnIT+oLofTdX2UKGgGR7/WedCmdiDvaAdLA2gIR0CnI8Ph60IDdX2UKGgGR7/AG0NSZSeiaAdLAmgIR0CnIgWdNFjNdX2UKGgGR7/Wtrbg0j1PaAdLA2gIR0CnIU12zOX3dX2UKGgGR7/BnZCfHxSYaAdLAmgIR0CnIg71ZkkKdX2UKGgGR7/agbZOBUaRaAdLBGgIR0CnI9lgtvn9dX2UKGgGR7/UeGO+7Dl6aAdLA2gIR0CnIV79qDbrdX2UKGgGR7+Wd3B55Z8saAdLAWgIR0CnIWN/vv0AdX2UKGgGR7/Y3ljmSyMUaAdLBGgIR0CnIiTt9hJAdX2UKGgGR7/WgG8mKIi1aAdLBGgIR0CnI+xnvlU7dX2UKGgGR7/AeXiR4hUzaAdLAmgIR0CnIWz2nKnvdX2UKGgGR8ARk25xzaK2aAdLMmgIR0CnIyojGDL9dX2UKGgGR7/PcvduYQaraAdLA2gIR0CnIX07jkuIdX2UKGgGR7/YB6KLsKLLaAdLBGgIR0CnJAHqVyFPdX2UKGgGR7+2EytV7x/eaAdLAmgIR0CnIYbdadMCdX2UKGgGR7/NU9ZA6dUbaAdLA2gIR0CnJBHHNorXdX2UKGgGR7/SGxD9fkWAaAdLA2gIR0CnIZd3B55adX2UKGgGR7+/rNW2gFotaAdLAmgIR0CnJB0zCUHIdX2UKGgGR7/AtHxz7uUmaAdLAmgIR0CnJCl1KXfJdX2UKGgGR7/VnTRYzSCwaAdLA2gIR0CnIanJDE3sdX2UKGgGR7/AMFUyYXwcaAdLAmgIR0CnJDLS3LFGdX2UKGgGR7/Gc2itaIN3aAdLA2gIR0CnIbluFYdRdX2UKGgGR7+93EAHVwxWaAdLAmgIR0CnJD2a2F37dX2UKGgGR7/AiCaqjrRjaAdLAmgIR0CnJEptJnQIdX2UKGgGR7/WxZuAI6bOaAdLBGgIR0CnIdBJI1+BdX2UKGgGR7/I0WM0gr6MaAdLA2gIR0CnJFl6JIlMdX2UKGgGR7/SKjBVMmF8aAdLA2gIR0CnIeEIw/PgdX2UKGgGR7/PN3W4EwFlaAdLA2gIR0CnJGmfPHDKdX2UKGgGR7+0V+I/JNj9aAdLAmgIR0CnIeosAeaKdX2UKGgGR7/OIfr8iwB6aAdLA2gIR0CnJHjV6NVBdX2UKGgGR8AHIbuMMqjKaAdLG2gIR0CnIrX/xUeddX2UKGgGR7/LQUHpr1ujaAdLA2gIR0CnIfm47Rv4dX2UKGgGR7+6Xsw+MZP3aAdLAmgIR0CnIgK8DjiodX2UKGgGR7/S3R5TqB3BaAdLA2gIR0CnJIdN34bkdX2UKGgGR7/K9wFTvRZ2aAdLA2gIR0CnJJgQQL/kdX2UKGgGR7/gMH0K7ZnMaAdLBmgIR0CnItUzCUHIdX2UKGgGR7/VibUgB91EaAdLBGgIR0CnIhjVhCtzdX2UKGgGR7/FKq4pc5bRaAdLAmgIR0CnIt7FbVz7dX2UKGgGR7/KrsByS3b3aAdLA2gIR0CnJKZJTVDsdX2UKGgGR7/UV45cTrVwaAdLBGgIR0CnIi4RVZLadX2UKGgGR7/R6yjYZl4DaAdLA2gIR0CnJLcL8aXKdX2UKGgGR7/MtdzGPxQSaAdLBGgIR0CnIvTakAPvdX2UKGgGR7/NNWU8mrsCaAdLA2gIR0CnIj2+GoJidX2UKGgGR7+b2+PBBRhuaAdLAWgIR0CnIkLUsnRcdX2UKGgGR7/OxQBPsRg7aAdLA2gIR0CnJMoX9BKMdX2UKGgGR7/Z/QBxPwd9aAdLBGgIR0CnIwwNb1RMdX2UKGgGR7+0c/+sHSncaAdLAmgIR0CnIk+KKpDNdX2UKGgGR7/V92HLzPKMaAdLA2gIR0CnJNgMtseodX2UKGgGR7/McuJ1q33IaAdLA2gIR0CnIl0pmVZ+dX2UKGgGR7/TCAMDwH7haAdLBGgIR0CnJPCz9jwydX2UKGgGR8AOOYnfEXLvaAdLL2gIR0CnJCgM+eOGdX2UKGgGR7/N5ylvZRKpaAdLA2gIR0CnInKv/zasdX2UKGgGR7+1gUlAu7HyaAdLAmgIR0CnJDGOU+s6dX2UKGgGR7/MN4qwyIpIaAdLA2gIR0CnJQMhouf3dX2UKGgGR7/q7FS88La3aAdLCWgIR0CnI0BzeXRgdX2UKGgGR7+bdWQwK0D2aAdLAWgIR0CnJQgrxy4ndX2UKGgGR7/E3nZCfHxSaAdLAmgIR0CnJD6JIlMRdX2UKGgGR7/iyzHCGetkaAdLBGgIR0CnIoj1oQFtdX2UKGgGR7+yeqaPS2H+aAdLAmgIR0CnI0pU5uIidX2UKGgGR7+/FwT/Q0GeaAdLAmgIR0CnJEhBAv+PdX2UKGgGR7/PBu4wyqMnaAdLA2gIR0CnJRcWTHKfdX2UKGgGR7/ULkS26TW5aAdLA2gIR0CnI1yBkI5YdX2UKGgGR7/TV+Zw4sEraAdLA2gIR0CnJSmcvugIdX2UKGgGR7/ZsImgJ1JUaAdLBGgIR0CnJF/Ot4iYdX2UKGgGR7/As5GSZBszaAdLAmgIR0CnI2baAWi2dX2UKGgGR7/a7HQyAQQMaAdLBmgIR0CnIqp6IFeOdX2UKGgGR7+ndZaFEiMYaAdLAWgIR0CnJS63qiXZdX2UKGgGR7+d5D7ZWaMKaAdLAWgIR0CnJGT7EYO2dX2UKGgGR7/BtIClrM1TaAdLAmgIR0CnI2/642CNdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cdaeb2959e564021338b48135d837e39a0f7aad104fcb96717339bf7b01634d
|
3 |
+
size 45167
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:442f43280d0584a9563501a81acf76887ddf940026ec0f405532a8a259ec130a
|
3 |
+
size 46447
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78b3140b37f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78b3140ab7c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698887772738336119, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwOoXv99I6z4kQ6k+3nvbvbFN+L6OWmu+qDKOPj+HErpSZd8+rI50v/sGoT+BWbO/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6X4uvwq3Qz9L3ZQ/nsOJv3lRsb8Vw5S/yJS+P3Dvrj/XQm8/kPW+vl7SJz/TbIO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADA6he/30jrPiRDqT6dx0S/uNfWP208Yj/ee9u9sU34vo5aa74iM+q/4sXav1e1rr+oMo4+P4cSulJl3z55q/w+edOIOTeSxz6sjnS/+wahP4FZs7/bMHa/s9sYP0Ndc7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-5.9342575e-01 4.5954034e-01 3.3059037e-01]\n [-1.0716985e-01 -4.8496774e-01 -2.2983763e-01]\n [ 2.7773023e-01 -5.5896112e-04 4.3631989e-01]\n [-9.5530200e-01 1.2580255e+00 -1.4011689e+00]]", "desired_goal": "[[-0.681624 0.7645117 1.1630033 ]\n [-1.0762823 -1.3852988 -1.1622034 ]\n [ 1.4889154 1.366682 0.93461365]\n [-0.37296724 0.6555537 -1.0267586 ]]", "observation": "[[-5.9342575e-01 4.5954034e-01 3.3059037e-01 -7.6867086e-01\n 1.6784582e+00 8.8373452e-01]\n [-1.0716985e-01 -4.8496774e-01 -2.2983763e-01 -1.8296854e+00\n -1.7091639e+00 -1.3649091e+00]\n [ 2.7773023e-01 -5.5896112e-04 4.3631989e-01 4.9349573e-01\n 2.6097501e-04 3.8978741e-01]\n [-9.5530200e-01 1.2580255e+00 -1.4011689e+00 -9.6168298e-01\n 5.9710234e-01 -9.5064181e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApEsDPsqWDL5/plI9k7MEvOp9+Tgkcfw9aKDhPQFCrDzwVTU+T5HYvaga8r0EnxU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 1.28218234e-01 -1.37293965e-01 5.14283143e-02]\n [-8.09945446e-03 1.18966986e-04 1.23262674e-01]\n [ 1.10169232e-01 2.10275669e-02 1.77085638e-01]\n [-1.05745904e-01 -1.18214905e-01 1.46114409e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9OVE/jbSJGMAWyUSwOMAXSUR0CnIxE25xzadX2UKGgGR7/J6Ww/xDsuaAdLA2gIR0CnIVNJOFg2dX2UKGgGR7/EFMZgogFHaAdLA2gIR0CnIJa9sabXdX2UKGgGR7/JRhMJx//eaAdLA2gIR0CnIyMbFS88dX2UKGgGR7+/GACnxaxHaAdLAmgIR0CnIWCY1He8dX2UKGgGR7+eU2UB4lhPaAdLAWgIR0CnIyglfJFLdX2UKGgGR7/QQTEit7rtaAdLA2gIR0CnIKjeCTUzdX2UKGgGR7/NhmXgLqlhaAdLA2gIR0CnIzilabF1dX2UKGgGR7/QDeTFERapaAdLBGgIR0CnIXWszVMFdX2UKGgGR7/E7/XGwRoRaAdLAmgIR0CnI0FnAZbZdX2UKGgGR7/GAEt/WlMzaAdLA2gIR0CnIYKxLTQWdX2UKGgGR7+4xDb8FY+0aAdLAmgIR0CnI0pLEk0KdX2UKGgGR7/pj0cwQDmsaAdLCGgIR0CnINJCrtE5dX2UKGgGR7/N9/BnBciXaAdLA2gIR0CnI1qGlANYdX2UKGgGR7/UMERradtmaAdLBGgIR0CnIZeGXXyzdX2UKGgGR7+6ee4Cp3otaAdLAmgIR0CnINr8aXKKdX2UKGgGR7/DB/qgRK6GaAdLAmgIR0CnI2Qc5sCUdX2UKGgGR7/QpcX3xnWbaAdLA2gIR0CnIanE/B3zdX2UKGgGR7/C9WZJCjUNaAdLAmgIR0CnI3Ha37UHdX2UKGgGR7/WFWn0kGA1aAdLBGgIR0CnIPJYkmhNdX2UKGgGR7/ARzRx95QhaAdLAmgIR0CnI3stkFwDdX2UKGgGR7/MItUXHim3aAdLA2gIR0CnIbhpQDV6dX2UKGgGR7+9ZmqYJE6UaAdLAmgIR0CnIPviLl3hdX2UKGgGR7/IJDVpblijaAdLA2gIR0CnI4wQ176YdX2UKGgGR7/SRNh3JPqLaAdLA2gIR0CnIck0Jng6dX2UKGgGR7/PgUDdP+GXaAdLA2gIR0CnIddBKL88dX2UKGgGR7/l7wSamXPaaAdLCGgIR0CnIShsANobdX2UKGgGR7/eZ39rGipOaAdLBmgIR0CnI6zYEnstdX2UKGgGR7/WgQpWmxdIaAdLA2gIR0CnIeo4EOiGdX2UKGgGR7+XK8tf5ULlaAdLAWgIR0CnI7Hqmj0udX2UKGgGR7/KoF3Y+Sr6aAdLA2gIR0CnIfwdS2pidX2UKGgGR7/Yncclw97oaAdLBGgIR0CnIT+oLofTdX2UKGgGR7/WedCmdiDvaAdLA2gIR0CnI8Ph60IDdX2UKGgGR7/AG0NSZSeiaAdLAmgIR0CnIgWdNFjNdX2UKGgGR7/Wtrbg0j1PaAdLA2gIR0CnIU12zOX3dX2UKGgGR7/BnZCfHxSYaAdLAmgIR0CnIg71ZkkKdX2UKGgGR7/agbZOBUaRaAdLBGgIR0CnI9lgtvn9dX2UKGgGR7/UeGO+7Dl6aAdLA2gIR0CnIV79qDbrdX2UKGgGR7+Wd3B55Z8saAdLAWgIR0CnIWN/vv0AdX2UKGgGR7/Y3ljmSyMUaAdLBGgIR0CnIiTt9hJAdX2UKGgGR7/WgG8mKIi1aAdLBGgIR0CnI+xnvlU7dX2UKGgGR7/AeXiR4hUzaAdLAmgIR0CnIWz2nKnvdX2UKGgGR8ARk25xzaK2aAdLMmgIR0CnIyojGDL9dX2UKGgGR7/PcvduYQaraAdLA2gIR0CnIX07jkuIdX2UKGgGR7/YB6KLsKLLaAdLBGgIR0CnJAHqVyFPdX2UKGgGR7+2EytV7x/eaAdLAmgIR0CnIYbdadMCdX2UKGgGR7/NU9ZA6dUbaAdLA2gIR0CnJBHHNorXdX2UKGgGR7/SGxD9fkWAaAdLA2gIR0CnIZd3B55adX2UKGgGR7+/rNW2gFotaAdLAmgIR0CnJB0zCUHIdX2UKGgGR7/AtHxz7uUmaAdLAmgIR0CnJCl1KXfJdX2UKGgGR7/VnTRYzSCwaAdLA2gIR0CnIanJDE3sdX2UKGgGR7/AMFUyYXwcaAdLAmgIR0CnJDLS3LFGdX2UKGgGR7/Gc2itaIN3aAdLA2gIR0CnIbluFYdRdX2UKGgGR7+93EAHVwxWaAdLAmgIR0CnJD2a2F37dX2UKGgGR7/AiCaqjrRjaAdLAmgIR0CnJEptJnQIdX2UKGgGR7/WxZuAI6bOaAdLBGgIR0CnIdBJI1+BdX2UKGgGR7/I0WM0gr6MaAdLA2gIR0CnJFl6JIlMdX2UKGgGR7/SKjBVMmF8aAdLA2gIR0CnIeEIw/PgdX2UKGgGR7/PN3W4EwFlaAdLA2gIR0CnJGmfPHDKdX2UKGgGR7+0V+I/JNj9aAdLAmgIR0CnIeosAeaKdX2UKGgGR7/OIfr8iwB6aAdLA2gIR0CnJHjV6NVBdX2UKGgGR8AHIbuMMqjKaAdLG2gIR0CnIrX/xUeddX2UKGgGR7/LQUHpr1ujaAdLA2gIR0CnIfm47Rv4dX2UKGgGR7+6Xsw+MZP3aAdLAmgIR0CnIgK8DjiodX2UKGgGR7/S3R5TqB3BaAdLA2gIR0CnJIdN34bkdX2UKGgGR7/K9wFTvRZ2aAdLA2gIR0CnJJgQQL/kdX2UKGgGR7/gMH0K7ZnMaAdLBmgIR0CnItUzCUHIdX2UKGgGR7/VibUgB91EaAdLBGgIR0CnIhjVhCtzdX2UKGgGR7/FKq4pc5bRaAdLAmgIR0CnIt7FbVz7dX2UKGgGR7/KrsByS3b3aAdLA2gIR0CnJKZJTVDsdX2UKGgGR7/UV45cTrVwaAdLBGgIR0CnIi4RVZLadX2UKGgGR7/R6yjYZl4DaAdLA2gIR0CnJLcL8aXKdX2UKGgGR7/MtdzGPxQSaAdLBGgIR0CnIvTakAPvdX2UKGgGR7/NNWU8mrsCaAdLA2gIR0CnIj2+GoJidX2UKGgGR7+b2+PBBRhuaAdLAWgIR0CnIkLUsnRcdX2UKGgGR7/OxQBPsRg7aAdLA2gIR0CnJMoX9BKMdX2UKGgGR7/Z/QBxPwd9aAdLBGgIR0CnIwwNb1RMdX2UKGgGR7+0c/+sHSncaAdLAmgIR0CnIk+KKpDNdX2UKGgGR7/V92HLzPKMaAdLA2gIR0CnJNgMtseodX2UKGgGR7/McuJ1q33IaAdLA2gIR0CnIl0pmVZ+dX2UKGgGR7/TCAMDwH7haAdLBGgIR0CnJPCz9jwydX2UKGgGR8AOOYnfEXLvaAdLL2gIR0CnJCgM+eOGdX2UKGgGR7/N5ylvZRKpaAdLA2gIR0CnInKv/zasdX2UKGgGR7+1gUlAu7HyaAdLAmgIR0CnJDGOU+s6dX2UKGgGR7/MN4qwyIpIaAdLA2gIR0CnJQMhouf3dX2UKGgGR7/q7FS88La3aAdLCWgIR0CnI0BzeXRgdX2UKGgGR7+bdWQwK0D2aAdLAWgIR0CnJQgrxy4ndX2UKGgGR7/E3nZCfHxSaAdLAmgIR0CnJD6JIlMRdX2UKGgGR7/iyzHCGetkaAdLBGgIR0CnIoj1oQFtdX2UKGgGR7+yeqaPS2H+aAdLAmgIR0CnI0pU5uIidX2UKGgGR7+/FwT/Q0GeaAdLAmgIR0CnJEhBAv+PdX2UKGgGR7/PBu4wyqMnaAdLA2gIR0CnJRcWTHKfdX2UKGgGR7/ULkS26TW5aAdLA2gIR0CnI1yBkI5YdX2UKGgGR7/TV+Zw4sEraAdLA2gIR0CnJSmcvugIdX2UKGgGR7/ZsImgJ1JUaAdLBGgIR0CnJF/Ot4iYdX2UKGgGR7/As5GSZBszaAdLAmgIR0CnI2baAWi2dX2UKGgGR7/a7HQyAQQMaAdLBmgIR0CnIqp6IFeOdX2UKGgGR7+ndZaFEiMYaAdLAWgIR0CnJS63qiXZdX2UKGgGR7+d5D7ZWaMKaAdLAWgIR0CnJGT7EYO2dX2UKGgGR7/BtIClrM1TaAdLAmgIR0CnI2/642CNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (726 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.21517144404351712, "std_reward": 0.09409034398358117, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-02T02:09:58.092855"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65d7fc0e31482d867b9a9d6b80207a6d6c24cedb566959ea9d4df0a054cac5c6
|
3 |
+
size 2623
|