Ihor commited on
Commit
913341c
·
verified ·
1 Parent(s): 006571f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -71,7 +71,7 @@ labels = ["Microsoft <> founder", "Microsoft <> inception date", "Bill Gates <>
71
  entities = model.predict_entities(text, labels)
72
 
73
  for entity in entities:
74
- print(entity["label"], “=>”, entity["text"])
75
  ```
76
  ### Construct relations extraction pipeline with [utca](https://github.com/Knowledgator/utca)
77
  First of all, we need import neccessary components of the library and initalize predictor - GLiNER model and construct pipeline that combines NER and realtions extraction:
@@ -202,7 +202,7 @@ labels = ["summary"]
202
  input_ = prompt+text
203
 
204
  threshold = 0.5
205
- summaries = model.predict_entities(input_, labels, threshold=treashold)
206
 
207
  for summary in summaries:
208
  print(summary["text"], "=>", summary["score"])
 
71
  entities = model.predict_entities(text, labels)
72
 
73
  for entity in entities:
74
+ print(entity["label"], "=>", entity["text"])
75
  ```
76
  ### Construct relations extraction pipeline with [utca](https://github.com/Knowledgator/utca)
77
  First of all, we need import neccessary components of the library and initalize predictor - GLiNER model and construct pipeline that combines NER and realtions extraction:
 
202
  input_ = prompt+text
203
 
204
  threshold = 0.5
205
+ summaries = model.predict_entities(input_, labels, threshold=threshold)
206
 
207
  for summary in summaries:
208
  print(summary["text"], "=>", summary["score"])