ppo-LunarLander-v2 / config.json
koenopok's picture
Upload PPO LunarLander-v2 trained agent
61843a8 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7acbbd1823b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7acbbd182440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7acbbd1824d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7acbbd182560>", "_build": "<function ActorCriticPolicy._build at 0x7acbbd1825f0>", "forward": "<function ActorCriticPolicy.forward at 0x7acbbd182680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7acbbd182710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7acbbd1827a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7acbbd182830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7acbbd1828c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7acbbd182950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7acbbd1829e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7acbbd136380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718280758483926506, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABq+BL3LsYQ9Q/53PhPrSr7Eqtk9falKvAAAAAAAAAAAqtefvp+1Cz+euRw9TZ76vh/lT75YnzQ9AAAAAAAAAACTnxq+E5edPr4nrT0ib52+ChlmvRIm1zsAAAAAAAAAAFYeiz4BIHU/nUf9PrdcIb8yfNA+2QWHPQAAAAAAAAAAwItcvnp1EL3uBNi8YdyHuz0Mej5jiEo8AACAPwAAgD/NDF49i5nHPfnJGb7KDAi+qIeSvUzXgL0AAAAAAAAAAGY+eryRLBc+h5iAvRy1a768I668fl6VvAAAAAAAAAAA2vcGPlfM5D4a8Ki9RF7Fvv9y9zzuRQ69AAAAAAAAAABzYrO9lcU4PpRrHz4OSz++qbFcPaztQjwAAAAAAAAAADPbFD1W+TY9eNDNvUzpKL7axji9OvS+vQAAAAAAAAAAmqBlPXzsGz6ji/u9a6EfviIxMTo2aFg9AAAAAAAAAACAljS9YXntPi1ZjL3NLd2+GDLVvPZwGr0AAAAAAAAAAHO+kz2e/ag/3ZYEPxat8L7V3Ug9GhtVPgAAAAAAAAAA85W7PRTKkboG8QA4eg/nMnaX+TpFsRW3AACAPwAAgD9ahIw9FOaTuhpsbrNCk3eupUn1OsYPqjMAAIA/AACAP9BhiD7Mm4g+m+fAvtllf766WyO8AWeGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6lDAJswcqMAWyUS/iMAXSUR0CQeOCnP3SKdX2UKGgGR0BxHqLGaQV9aAdL6mgIR0CQeSpiI+GHdX2UKGgGR0Bxs+FXaJyiaAdNAwFoCEdAkHn6CHymRHV9lChoBkdAc00jc2zfJmgHTWABaAhHQJB6KSzPa+N1fZQoaAZHQG6JDw6QvHtoB0vkaAhHQJB6KKFZgXx1fZQoaAZHQHGmH+dbxExoB0vMaAhHQJB6WgElme11fZQoaAZHQHFbiNwR5C5oB00tAWgIR0CQeqJJ5E+gdX2UKGgGR0BuRc/wAlv7aAdL3WgIR0CQettnf2sadX2UKGgGR0BwZzeEZiuuaAdL92gIR0CQe+k/KQq7dX2UKGgGR0BvJw6p5u63aAdL6GgIR0CQfG87p3X7dX2UKGgGR0ByGMBmwqy4aAdNSgFoCEdAkH1k65oXbnV9lChoBkdAcfnp4bCJoGgHS+doCEdAkH40AYHgP3V9lChoBkdAch5VkMCtBGgHTRMBaAhHQJB+NBY3eep1fZQoaAZHQHHsbLEDQqtoB0vVaAhHQJB+da5f+jx1fZQoaAZHQHNOOg6EJ0JoB00AAWgIR0CQfpbXHzYmdX2UKGgGR0BygqYfGMn7aAdL/2gIR0CQfyP07KaHdX2UKGgGR0BIIYTCcf/4aAdLz2gIR0CQf35NoJzDdX2UKGgGR0BvdJ8v24/eaAdL5WgIR0CQf9mlZX+3dX2UKGgGR0Bv+mA/cFhYaAdNJAFoCEdAkH/7PQfIS3V9lChoBkdAcpx0TlDF62gHTT4BaAhHQJCA8i4axX51fZQoaAZHQHMBqUaAFxJoB00UAWgIR0CQgPDrZ8KHdX2UKGgGR0ByPqROk+HKaAdL8GgIR0CQgQAGSpzcdX2UKGgGR0BxMGYplSTAaAdNEwFoCEdAkIEWN70Fr3V9lChoBkdAcQBjrzGxU2gHS95oCEdAkIGmfChvi3V9lChoBkdAcLvsPrfLtGgHTUUBaAhHQJCCwlu3trt1fZQoaAZHQHLowSBbwBpoB00gAWgIR0CQg+8mrsBydX2UKGgGR0ByOWG8EmpmaAdL+mgIR0CQg/5N47iidX2UKGgGR0ByjURNATqTaAdL1WgIR0CQhB10knkUdX2UKGgGR0BvY/029+PSaAdL6mgIR0CQhEpHI6sAdX2UKGgGR0BwPXvBrN4aaAdNAAFoCEdAkIUXqmj0tnV9lChoBkdAcb9tUXHim2gHS+FoCEdAkIVRXwLE1nV9lChoBkdAc55p5eJHiGgHTRsBaAhHQJCFmRlpXZJ1fZQoaAZHQG5wHPeHi3poB00BAWgIR0CQheC8OCoTdX2UKGgGR0BwhugK4QSSaAdL52gIR0CQhf+9rXUZdX2UKGgGR0Bx/GlMyrPuaAdL8WgIR0CQhiHv+fh/dX2UKGgGR0BzrgLhJiAlaAdL8GgIR0CQhzf8/D+BdX2UKGgGR0ByMKKP4mCzaAdL3mgIR0CQh2Mo+fRNdX2UKGgGR0BvLisbNr0raAdNBAFoCEdAkIeb7wazeHV9lChoBkdAcF3gQHzH0mgHTRgBaAhHQJCIGgvlEJB1fZQoaAZHQHARb3j+719oB00WAWgIR0CQiBluWKMvdX2UKGgGR0BxbP/ZM+NcaAdL/GgIR0CQmsIsyzomdX2UKGgGR0Buy3QdCE6DaAdL3WgIR0CQmwPCVKPGdX2UKGgGR0Bxi//82rGSaAdL7WgIR0CQm81WKdhBdX2UKGgGR0BvZA5T6zmfaAdL/WgIR0CQnDvQ4S6EdX2UKGgGR0BwwnOkcjqwaAdL+mgIR0CQna+WGATadX2UKGgGR0BwGRFI/Z/TaAdL9GgIR0CQncUs4DLbdX2UKGgGR0BwjsVBUrCnaAdL6WgIR0CQnkLHMlkZdX2UKGgGR0BwPhvkzXSSaAdNLQFoCEdAkJ5qxTsIFHV9lChoBkdAcgTRVZLZjGgHTREBaAhHQJCfgSM98qp1fZQoaAZHQHGx6vA44qBoB00hAWgIR0CQn7W5paicdX2UKGgGR0Bz7BtLteD4aAdNIAFoCEdAkKBoUN8VpXV9lChoBkdAcGjesPrfL2gHS+RoCEdAkKBm3vx6OnV9lChoBkdAckFXJo0yg2gHS/toCEdAkKDw5eZ5RnV9lChoBkdAb2eumrKeTWgHS+BoCEdAkKD6lDWsinV9lChoBkdAcTxesxO+I2gHTQwBaAhHQJChT7oB7u51fZQoaAZHQHINVf3N9phoB00BAWgIR0CQoghllK9PdX2UKGgGR0ByKIxO+IuXaAdL1mgIR0CQoocPvrnldX2UKGgGR0BRnq6J66ataAdLwWgIR0CQopkfs/pudX2UKGgGR0By14IMSbpeaAdL9mgIR0CQozFvhqCZdX2UKGgGR0BymwJHAh0RaAdLzWgIR0CQo03DvVmSdX2UKGgGR0BvBn4CZF5OaAdL22gIR0CQpVE1EVnFdX2UKGgGR0BzPnPnjhkzaAdL42gIR0CQplyZKFqSdX2UKGgGR0Bv6SfFrEcbaAdL6mgIR0CQpm1qWToudX2UKGgGR0BvtRgogFHKaAdL1mgIR0CQptORT0g9dX2UKGgGR0BzJ4ihWYF8aAdL4WgIR0CQp0VpsXSCdX2UKGgGR0BtiKmXPZ7HaAdL22gIR0CQqAkyULUkdX2UKGgGR0BxL/P9kz42aAdL7GgIR0CQqBnnuAqedX2UKGgGR0Bwc6Wu5jH5aAdL7mgIR0CQqCUFSsKcdX2UKGgGR0BxXemCROk+aAdL12gIR0CQqUhnanJldX2UKGgGR0BxMF5le4TcaAdL22gIR0CQqXP557gLdX2UKGgGR0BwSoSzw+dLaAdNCAFoCEdAkKmQrxy4nXV9lChoBkdAcn2eHzpX62gHTR0BaAhHQJCp3cBU70Z1fZQoaAZHQHBJElVtGd9oB0v9aAhHQJCp4y2x6fJ1fZQoaAZHQHAMcqFyq+9oB0vbaAhHQJCp9fqoqCp1fZQoaAZHQHKsViKBNEhoB0v+aAhHQJCq1k4FRpF1fZQoaAZHQHFf3U6PsAxoB0vWaAhHQJCr4Er5IpZ1fZQoaAZHQHBBvexfOUtoB0v2aAhHQJCs4QkHD791fZQoaAZHQHPqHARChOBoB0vqaAhHQJCs+emNzbN1fZQoaAZHQHLxNBfKISFoB0vkaAhHQJCuS5UcXFd1fZQoaAZHQG6aNWuHN5doB0v1aAhHQJCuvq2SdOJ1fZQoaAZHQHEk4gNgBtFoB0vKaAhHQJCu0T7EYO51fZQoaAZHQHNB7XxvvSdoB00UAWgIR0CQrtiPyTY/dX2UKGgGR0BxfnjIaLn+aAdNCgFoCEdAkK9lUdaMaXV9lChoBkdAcg9tgrpaBGgHS/ZoCEdAkLBWCqZMMHV9lChoBkdAcX7GD+R5kmgHS/ZoCEdAkLC3+VC5VnV9lChoBkdAb7YI+GGmDWgHTQMBaAhHQJCxOlpGnXN1fZQoaAZHQFB7Ieo1k2BoB0umaAhHQJCx4aUA1el1fZQoaAZHQHDjUJ4SpR5oB00LAWgIR0CQtBH1vl2edX2UKGgGR0BwpIxcmjTKaAdL7GgIR0CQtE/y5I6KdX2UKGgGR0ByqXRZ2ZAqaAdNQgFoCEdAkLSEr9VFQXV9lChoBkdAcolb+cYqG2gHTXcBaAhHQJC020gKWs11fZQoaAZHQHD9azzErG1oB0vVaAhHQJC0+IP9UCJ1fZQoaAZHQHMH0SZjQRhoB02OAWgIR0CQtRkD6nBMdX2UKGgGR0BxZY/eLvTgaAdNKAJoCEdAkLV7WqcVg3V9lChoBkdAcDZ4hEBsAWgHS9doCEdAkLV6rzXjEXV9lChoBkdAcDLVQQ+UyGgHS95oCEdAkLYt8JD3NHV9lChoBkdAcYc0DEFW4mgHS/doCEdAkLZKkhzNlnV9lChoBkdAa+/F4LThHmgHS/xoCEdAkLZZPM0P6XV9lChoBkdAcuNGKhtcfWgHS+1oCEdAkLdbnHNorXV9lChoBkdAcoiGyX2M9GgHS/BoCEdAkLgic5Ke1HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}