--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-14B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 1a5454e9-ae15-4661-9ea3-d50e7183d2fb results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-14B-Instruct bf16: auto chat_template: llama3 cosine_min_lr_ratio: 0.1 data_processes: 4 dataset_prepared_path: null datasets: - data_files: - b9066c0e537cee05_train_data.json ds_type: json format: custom path: /workspace/input_data/b9066c0e537cee05_train_data.json type: field_input: solution_steps field_instruction: problem field_output: target_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 25 eval_table_size: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: kokovova/1a5454e9-ae15-4661-9ea3-d50e7183d2fb hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 72GiB max_steps: 75 micro_batch_size: 2 mlflow_experiment_name: /tmp/b9066c0e537cee05_train_data.json model_type: AutoModelForCausalLM num_epochs: 6 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 4096 strict: false tf32: true tokenizer_type: AutoTokenizer torch_dtype: bfloat16 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1a5454e9-ae15-4661-9ea3-d50e7183d2fb wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1a5454e9-ae15-4661-9ea3-d50e7183d2fb warmup_ratio: 0.05 weight_decay: 0.01 xformers_attention: true ```

# 1a5454e9-ae15-4661-9ea3-d50e7183d2fb This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 3 - training_steps: 75 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.825 | 0.0000 | 1 | 5.6550 | | 0.2094 | 0.0009 | 25 | 0.1727 | | 0.0744 | 0.0017 | 50 | 0.0443 | | 0.0082 | 0.0026 | 75 | 0.0197 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1