--- library_name: peft base_model: Korabbit/llama-2-ko-7b tags: - axolotl - generated_from_trainer model-index: - name: d0bdbcf6-ea3e-48d3-b1b4-ce0665ed4dd7 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Korabbit/llama-2-ko-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1c2d230e0db4aaf5_train_data.json ds_type: json format: custom path: /workspace/input_data/1c2d230e0db4aaf5_train_data.json type: field_input: transcript field_instruction: text_description field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kokovova/d0bdbcf6-ea3e-48d3-b1b4-ce0665ed4dd7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 76GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/1c2d230e0db4aaf5_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 2048 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d0bdbcf6-ea3e-48d3-b1b4-ce0665ed4dd7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d0bdbcf6-ea3e-48d3-b1b4-ce0665ed4dd7 warmup_steps: 10 weight_decay: 0.1 xformers_attention: true ```

# d0bdbcf6-ea3e-48d3-b1b4-ce0665ed4dd7 This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9264 | 0.0006 | 1 | 0.9885 | | 0.8253 | 0.0012 | 2 | 0.9858 | | 1.0454 | 0.0024 | 4 | 0.9375 | | 0.8906 | 0.0036 | 6 | 0.7199 | | 0.5989 | 0.0048 | 8 | 0.4512 | | 0.4002 | 0.0060 | 10 | 0.3309 | | 0.2537 | 0.0072 | 12 | 0.2452 | | 0.2539 | 0.0083 | 14 | 0.2000 | | 0.2893 | 0.0095 | 16 | 0.1798 | | 0.0675 | 0.0107 | 18 | 0.1585 | | 0.178 | 0.0119 | 20 | 0.1537 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1