--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.77 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/scott-poynts-nil/huggingface/runs/mvcwa6jm) # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7624 - Accuracy: 0.77 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.169 | 1.0 | 57 | 2.0533 | 0.51 | | 1.6117 | 2.0 | 114 | 1.5264 | 0.57 | | 1.3112 | 3.0 | 171 | 1.2764 | 0.64 | | 0.9584 | 4.0 | 228 | 1.0663 | 0.72 | | 0.8809 | 5.0 | 285 | 0.9548 | 0.72 | | 0.7652 | 6.0 | 342 | 0.9119 | 0.77 | | 0.6498 | 7.0 | 399 | 0.8271 | 0.77 | | 0.5007 | 8.0 | 456 | 0.7962 | 0.76 | | 0.4747 | 9.0 | 513 | 0.7583 | 0.77 | | 0.4418 | 10.0 | 570 | 0.7624 | 0.77 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1