kosec39 commited on
Commit
ad26a72
1 Parent(s): 7c98bb2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - conll2003
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: conll2003
20
+ type: conll2003
21
+ config: conll2003
22
+ split: train
23
+ args: conll2003
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9427525378598769
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9533826994278021
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9480378211028366
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9866957084829575
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # bert-finetuned-ner
43
+
44
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.1128
47
+ - Precision: 0.9428
48
+ - Recall: 0.9534
49
+ - F1: 0.9480
50
+ - Accuracy: 0.9867
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 15
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0937 | 1.0 | 1756 | 0.0660 | 0.9179 | 0.9332 | 0.9255 | 0.9825 |
82
+ | 0.0378 | 2.0 | 3512 | 0.0766 | 0.9246 | 0.9451 | 0.9348 | 0.9843 |
83
+ | 0.0245 | 3.0 | 5268 | 0.0667 | 0.9241 | 0.9409 | 0.9325 | 0.9843 |
84
+ | 0.017 | 4.0 | 7024 | 0.0712 | 0.9343 | 0.9505 | 0.9424 | 0.9863 |
85
+ | 0.0143 | 5.0 | 8780 | 0.0898 | 0.9366 | 0.9492 | 0.9428 | 0.9855 |
86
+ | 0.0049 | 6.0 | 10536 | 0.0964 | 0.9294 | 0.9482 | 0.9387 | 0.9853 |
87
+ | 0.0039 | 7.0 | 12292 | 0.1001 | 0.9353 | 0.9512 | 0.9432 | 0.9860 |
88
+ | 0.0036 | 8.0 | 14048 | 0.1002 | 0.9388 | 0.9522 | 0.9454 | 0.9862 |
89
+ | 0.0018 | 9.0 | 15804 | 0.1049 | 0.9363 | 0.9495 | 0.9428 | 0.9861 |
90
+ | 0.0019 | 10.0 | 17560 | 0.1191 | 0.9375 | 0.9497 | 0.9436 | 0.9849 |
91
+ | 0.0008 | 11.0 | 19316 | 0.1083 | 0.9396 | 0.9530 | 0.9463 | 0.9864 |
92
+ | 0.0003 | 12.0 | 21072 | 0.1064 | 0.9419 | 0.9530 | 0.9475 | 0.9864 |
93
+ | 0.0004 | 13.0 | 22828 | 0.1091 | 0.9448 | 0.9527 | 0.9487 | 0.9865 |
94
+ | 0.0006 | 14.0 | 24584 | 0.1132 | 0.9464 | 0.9542 | 0.9503 | 0.9867 |
95
+ | 0.0004 | 15.0 | 26340 | 0.1128 | 0.9428 | 0.9534 | 0.9480 | 0.9867 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.23.1
101
+ - Pytorch 1.12.1+cu113
102
+ - Datasets 2.6.1
103
+ - Tokenizers 0.13.1