kperkins411
commited on
Commit
•
227684e
1
Parent(s):
94d9f47
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1011 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1011 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/multi-qa-mpnet-base-cos-v1
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- cosine_accuracy@1
|
8 |
+
- cosine_accuracy@3
|
9 |
+
- cosine_accuracy@5
|
10 |
+
- cosine_accuracy@10
|
11 |
+
- cosine_precision@1
|
12 |
+
- cosine_precision@3
|
13 |
+
- cosine_precision@5
|
14 |
+
- cosine_precision@10
|
15 |
+
- cosine_recall@1
|
16 |
+
- cosine_recall@3
|
17 |
+
- cosine_recall@5
|
18 |
+
- cosine_recall@10
|
19 |
+
- cosine_ndcg@10
|
20 |
+
- cosine_mrr@10
|
21 |
+
- cosine_map@100
|
22 |
+
- dot_accuracy@1
|
23 |
+
- dot_accuracy@3
|
24 |
+
- dot_accuracy@5
|
25 |
+
- dot_accuracy@10
|
26 |
+
- dot_precision@1
|
27 |
+
- dot_precision@3
|
28 |
+
- dot_precision@5
|
29 |
+
- dot_precision@10
|
30 |
+
- dot_recall@1
|
31 |
+
- dot_recall@3
|
32 |
+
- dot_recall@5
|
33 |
+
- dot_recall@10
|
34 |
+
- dot_ndcg@10
|
35 |
+
- dot_mrr@10
|
36 |
+
- dot_map@100
|
37 |
+
pipeline_tag: sentence-similarity
|
38 |
+
tags:
|
39 |
+
- sentence-transformers
|
40 |
+
- sentence-similarity
|
41 |
+
- feature-extraction
|
42 |
+
- generated_from_trainer
|
43 |
+
- dataset_size:491850
|
44 |
+
- loss:MultipleNegativesRankingLoss
|
45 |
+
widget:
|
46 |
+
- source_sentence: Is Auriemma able to affect the choices made by the educational
|
47 |
+
institution in Connecticut regarding deals with rivals of the company located
|
48 |
+
in Berkshire?
|
49 |
+
sentences:
|
50 |
+
- "13. EXPENSES ASSOCIATED WITH THIS AGREEMENT. Marv shall be reimbursed in\
|
51 |
+
\ full for the cost(s) of all legal expenses associated with this agreement by\
|
52 |
+
\ THI. [remainder of page intentionally left blank; signature page to follow]\n\
|
53 |
+
\n5\n\n\n\n\n\n IN WITNESS WHEREOF, the Parties hereto, agreeing\
|
54 |
+
\ to be bound hereby, execute this Agreement upon the date first set forth above.\
|
55 |
+
\ Premier Biomedical, Inc.: /s/ William Hartman Date__________ By:\
|
56 |
+
\ William Hartman, CEO Technology Health, Inc.: /s/ James Christopher\
|
57 |
+
\ LeDoux Date___________ By: CEO Marv Enterprises, LLC: \
|
58 |
+
\ /s/ Mitchell Felder Date__________ By: Mitchell Felder\n\n6"
|
59 |
+
- Notwithstanding the foregoing, either party shall have the right to assign this
|
60 |
+
Agreement in connection with the merger or acquisition of such party or the sale
|
61 |
+
of all or substantially all of its assets related to this Agreement without such
|
62 |
+
consent, except in the case where such transaction involves a direct competitor
|
63 |
+
of the other party where consent of the other party will be required.
|
64 |
+
- Notwithstanding the foregoing, it is understood that Auriemma has no control or
|
65 |
+
influence over any decisions by the University of Connecticut to enter into any
|
66 |
+
arrangement or agreement with any Berkshire Competitor.
|
67 |
+
- source_sentence: Can this location information be shared with third-party entities?
|
68 |
+
sentences:
|
69 |
+
- Information Collected by Third Parties Third Parties' Services Our Services may
|
70 |
+
contain third party tracking tools from third party service providers. Such third
|
71 |
+
parties may use cookies, APIs, and SDKs in our Services to enable them to collect
|
72 |
+
and analyze your information on our behalf. The third parties may have access
|
73 |
+
to information such as your device identifier, MAC address, IMEI, locale (specific
|
74 |
+
location where a given language is spoken), geo-location information, and IP address
|
75 |
+
for the purpose of providing their services under their respective privacy policies.
|
76 |
+
The Policy does not cover the use of tracking tools from third parties. We do
|
77 |
+
not have access or control over these third parties. If you would like to know
|
78 |
+
the information of the corresponding third parties, please contact us at support@meitu.com
|
79 |
+
or legal@meitu.com
|
80 |
+
- We may collect your location based information for the purpose of providing you
|
81 |
+
with a correct version of the application and our better Services. Except otherwise
|
82 |
+
provided in the Policy, we will not share this information with any third party.
|
83 |
+
If you no longer wish to allow us to track or use such information, you may turn
|
84 |
+
the internet access and/or GPS off at the device level or disable the relevant
|
85 |
+
permission to our application.
|
86 |
+
- Notwithstanding the foregoing, it is understood that Auriemma has no control or
|
87 |
+
influence over any decisions by the University of Connecticut to enter into any
|
88 |
+
arrangement or agreement with any Berkshire Competitor.
|
89 |
+
- source_sentence: 'Hashing: Is it applied to ANDROID_ID?'
|
90 |
+
sentences:
|
91 |
+
- Information associated with users is collected from cookies and similar technologies
|
92 |
+
such as digital identifiers, log files, web beacons, and plugins ("Cookies"),
|
93 |
+
which store certain information from user devices, allowing us to understand and
|
94 |
+
save preferences for future visits and to compile aggregate data about site traffic
|
95 |
+
and site interaction. If a user provides Received Information to us, then this
|
96 |
+
Received Information may be linked to data stored in Cookies.
|
97 |
+
- To the extent that the Parties have jointly developed any New Amorphous Alloy
|
98 |
+
Technology and they have agreed that such New Amorphous Alloy Technology will
|
99 |
+
be jointly owned, as set forth in Section 8.2 above, each Party hereby assigns
|
100 |
+
to the other, and will cause its employees, contractors, representatives, successors,
|
101 |
+
assigns, Affiliates, parents, subsidiaries, officers and directors to assign to
|
102 |
+
the other, a co-equal right, title and interest in and to any such jointly developed
|
103 |
+
New Amorphous Alloy Technology. T
|
104 |
+
- 'The analytics software may provide information about how you use your mobile
|
105 |
+
applications as well as how applications are performing across different handsets.
|
106 |
+
The third parties obtain this information as a result of data being sent to their
|
107 |
+
servers from our software "agent" if embedded in your mobile application. The
|
108 |
+
data collected by the agent may include: agent version, platform, SDK version,
|
109 |
+
timestamp, API key (identifier for application), application version, device identifier,
|
110 |
+
iOS Identifier for Advertising, iOS Identifier for Vendors, Media Access Control
|
111 |
+
(MAC) address, International Mobile Equipment Identity (IMEI), Model, manufacture
|
112 |
+
and OS version of device, session start/stop time, locale (specific location where
|
113 |
+
a given language is spoken), time zone, and network status (WiFi, etc.). It hashes
|
114 |
+
iOS device identifiers, MAC address and IMEI; however, we do not hash platform
|
115 |
+
device identifiers such as the iOS Identifier for Advertising, ANDROID_ID and
|
116 |
+
the BB_PIN. Hashing involves the transformation of these identifiers into a value
|
117 |
+
or key that represents the original identifier. The device identifiers (if applicable),
|
118 |
+
IMEI (if applicable), MAC address (if applicable), and platform are hashed to
|
119 |
+
a third party ID.'
|
120 |
+
- source_sentence: f"What constitutes 'Received Information' as defined in this contract?"
|
121 |
+
sentences:
|
122 |
+
- '"Effective Date" means the date as of which the last signature of a Party is
|
123 |
+
affixed hereto.'
|
124 |
+
- '"Received Information" means a user''s private, personal or personally identifying
|
125 |
+
or identifiable data or information, including content and contact information
|
126 |
+
such as name, email address, or social network identifier.'
|
127 |
+
- 'B. HOW WE USE COLLECTED INFORMATION a. Any of the information (Personal and Non-personal)
|
128 |
+
we collect from you may be used in one of the following ways: To personalize user
|
129 |
+
experience- We may use Information to understand demographics, customer interest,
|
130 |
+
and other trends among our Users;'
|
131 |
+
- source_sentence: What steps must precede mediation?
|
132 |
+
sentences:
|
133 |
+
- In case OntoChem finds a novel and unexpected antiviral use of those Rejected
|
134 |
+
Hit Compounds during this 2-years period, it will notify Anixa about these findings
|
135 |
+
and Anixa has the right of first negotiation during a period of 6 months after
|
136 |
+
this notification.
|
137 |
+
- '11. Dispute Resolution. a. Negotiation. If a Party believes that the other Party
|
138 |
+
has breached this Agreement or if there is a dispute between the Parties over
|
139 |
+
the interpretation of this Agreement (a "Dispute"), the Parties will endeavor
|
140 |
+
to resolve the Dispute through good faith negotiation for a period of thirty (30)
|
141 |
+
days after a Party notifies the other Party of the Dispute and before either Party
|
142 |
+
requests mediation or files litigation to resolve the Dispute. b. Mediation. If
|
143 |
+
the Parties have been unable to resolve a Dispute through good faith negotiation
|
144 |
+
as provided in the prior Subsection, a Party may request that the Parties attempt
|
145 |
+
to resolve the Dispute through mediation by notifying the other Party with a copy
|
146 |
+
to JAMS. The Parties will attempt to select a mutually acceptable JAMS mediator
|
147 |
+
within ten (10) days of the notice requesting mediation. The mediation will be
|
148 |
+
held in Lake County or Cook County, Illinois within thirty (30) days of the notice
|
149 |
+
requesting mediation before a JAMS mediator and in compliance with JAMS mediation
|
150 |
+
guidelines. Each party will bear its own costs in preparing for and participating
|
151 |
+
in the mediation and one-half of the fees and expenses charged by JAMS for conducting
|
152 |
+
the mediation. c. Litigation. If the Parties have been unable to resolve a Dispute
|
153 |
+
through mediation as provided in the prior Subsection, a Party may file litigation
|
154 |
+
against the other Party in a court of competent jurisdiction in the United States
|
155 |
+
of America. With respect to litigation involving only the Parties or their Affiliates,
|
156 |
+
the Parties irrevocably consent to the exclusive personal jurisdiction and venue
|
157 |
+
of the U.S. federal and Illinois state courts of competent subject matter jurisdiction
|
158 |
+
located in Lake County, Illinois or Cook County, Illinois and their respective
|
159 |
+
higher courts of appeal for the limited purpose of resolving a Dispute, and the
|
160 |
+
Parties waive, to the fullest extent permitted by law, any defense of inconvenient
|
161 |
+
forum. The Parties waive any right to trial by jury as to any Disputes resolved
|
162 |
+
through litigation. Notwithstanding the foregoing, a Party may file litigation
|
163 |
+
to resolve a Dispute without undergoing either negotiation or mediation as provided
|
164 |
+
in the prior Subsections for any Dispute involving: (i) infringement on intellectual
|
165 |
+
property; (ii) the unauthorized use or disclosure of Confidential Information;
|
166 |
+
or (iii) a request for a temporary restraining order, a preliminary or permanent
|
167 |
+
injunction or any other type of equitable relief. d. Remedies. Except as expressly
|
168 |
+
limited in the preceding Subsections and the other provisions in this Agreement,
|
169 |
+
a Party may immediately exercise any rights and remedies available to the Party
|
170 |
+
under Applicable Law upon a breach of this Agreement by the other Party. A Party
|
171 |
+
will not suspend performance under or terminate this Agreement or any accepted
|
172 |
+
purchase order for a product being purchased and sold under this Agreement unless:
|
173 |
+
(1) the other Party is in material breach of this Agreement and has either refused
|
174 |
+
to cure the material breach or has failed to cure the material breach within thirty
|
175 |
+
(30) day of its receipt of written notice of the failure; and (2) the Parties
|
176 |
+
have been unable to resolve the Dispute related to the material breach through
|
177 |
+
negotiation or mediation, or the breaching Party has refused or failed to attempt
|
178 |
+
to resolve the Dispute through negotiation or mediation, as provided in this Section.
|
179 |
+
Notwithstanding the foregoing, a Party may suspend performance or terminate this
|
180 |
+
Agreement or any accepted purchase order for a product being purchase and sold
|
181 |
+
under this Agreement immediately on written notice to the other Party, and without
|
182 |
+
providing the other Party an opportunity to cure the material breach or attempting
|
183 |
+
to resolve a Dispute over the material breach by negotiation or mediation as provided
|
184 |
+
in this Section, for a material breach by the other Party involving substantial
|
185 |
+
harm to the reputation, goodwill and business of the non-breaching Party that
|
186 |
+
cannot reasonably be avoided or fully redressed by providing the other Party an
|
187 |
+
opportunity to cure the material breach. e. Late Fees and Collection Costs. If
|
188 |
+
Buyer fails to pay Seller an amount owed under this Agreement by the invoice due
|
189 |
+
date, then Buyer will owe Seller: (i) the delinquent amount; and (ii) a late payment
|
190 |
+
fee equal to two percent (2%) of the delinquent amount for each full or partial
|
191 |
+
calendar month past the invoice due date that the delinquent amount remains unpaid.
|
192 |
+
In addition, if Seller has to file
|
193 |
+
|
194 |
+
|
195 |
+
Source: REYNOLDS CONSUMER PRODUCTS INC., S-1, 11/15/2019
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
litigation to collect the amount owed and Seller prevails in the litigation, Buyer
|
203 |
+
will reimburse Seller for actual, reasonable, substantiated out-of-pocket expenses
|
204 |
+
incurred by Seller in collecting the delinquent amount and accrued late payment
|
205 |
+
fees on the delinquent amount. Under no circumstance will the late payment fee
|
206 |
+
payable to Seller exceed the amount that a creditor may lawfully impose on a debtor
|
207 |
+
on a delinquent amount under Applicable Law.'
|
208 |
+
- Third Party, Services, Ads and Analytics Ad companies may use and collect anonymous
|
209 |
+
data about your interests to customize content and advertising here and in other
|
210 |
+
sites and applications. Interest and location data may be linked to your device,
|
211 |
+
but is not linked to your identity. Analytics companies may access anonymous data
|
212 |
+
(such as your IP address or device ID) to help us understand how our services
|
213 |
+
are used. They use this data solely on our behalf. They do not share it except
|
214 |
+
in aggregate form; no data is shared as to any individual user.
|
215 |
+
model-index:
|
216 |
+
- name: SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-cos-v1
|
217 |
+
results:
|
218 |
+
- task:
|
219 |
+
type: information-retrieval
|
220 |
+
name: Information Retrieval
|
221 |
+
dataset:
|
222 |
+
name: multi qa mpnet base cos v1
|
223 |
+
type: multi-qa-mpnet-base-cos-v1
|
224 |
+
metrics:
|
225 |
+
- type: cosine_accuracy@1
|
226 |
+
value: 0.5675880348352896
|
227 |
+
name: Cosine Accuracy@1
|
228 |
+
- type: cosine_accuracy@3
|
229 |
+
value: 0.7251041272245362
|
230 |
+
name: Cosine Accuracy@3
|
231 |
+
- type: cosine_accuracy@5
|
232 |
+
value: 0.7890950397576676
|
233 |
+
name: Cosine Accuracy@5
|
234 |
+
- type: cosine_accuracy@10
|
235 |
+
value: 0.8458917076864824
|
236 |
+
name: Cosine Accuracy@10
|
237 |
+
- type: cosine_precision@1
|
238 |
+
value: 0.5675880348352896
|
239 |
+
name: Cosine Precision@1
|
240 |
+
- type: cosine_precision@3
|
241 |
+
value: 0.24170137574151201
|
242 |
+
name: Cosine Precision@3
|
243 |
+
- type: cosine_precision@5
|
244 |
+
value: 0.1578190079515335
|
245 |
+
name: Cosine Precision@5
|
246 |
+
- type: cosine_precision@10
|
247 |
+
value: 0.08458917076864823
|
248 |
+
name: Cosine Precision@10
|
249 |
+
- type: cosine_recall@1
|
250 |
+
value: 0.5675880348352896
|
251 |
+
name: Cosine Recall@1
|
252 |
+
- type: cosine_recall@3
|
253 |
+
value: 0.7251041272245362
|
254 |
+
name: Cosine Recall@3
|
255 |
+
- type: cosine_recall@5
|
256 |
+
value: 0.7890950397576676
|
257 |
+
name: Cosine Recall@5
|
258 |
+
- type: cosine_recall@10
|
259 |
+
value: 0.8458917076864824
|
260 |
+
name: Cosine Recall@10
|
261 |
+
- type: cosine_ndcg@10
|
262 |
+
value: 0.7056724990427845
|
263 |
+
name: Cosine Ndcg@10
|
264 |
+
- type: cosine_mrr@10
|
265 |
+
value: 0.6608194647289684
|
266 |
+
name: Cosine Mrr@10
|
267 |
+
- type: cosine_map@100
|
268 |
+
value: 0.6658281637529629
|
269 |
+
name: Cosine Map@100
|
270 |
+
- type: dot_accuracy@1
|
271 |
+
value: 0.5675880348352896
|
272 |
+
name: Dot Accuracy@1
|
273 |
+
- type: dot_accuracy@3
|
274 |
+
value: 0.7251041272245362
|
275 |
+
name: Dot Accuracy@3
|
276 |
+
- type: dot_accuracy@5
|
277 |
+
value: 0.7890950397576676
|
278 |
+
name: Dot Accuracy@5
|
279 |
+
- type: dot_accuracy@10
|
280 |
+
value: 0.8458917076864824
|
281 |
+
name: Dot Accuracy@10
|
282 |
+
- type: dot_precision@1
|
283 |
+
value: 0.5675880348352896
|
284 |
+
name: Dot Precision@1
|
285 |
+
- type: dot_precision@3
|
286 |
+
value: 0.24170137574151201
|
287 |
+
name: Dot Precision@3
|
288 |
+
- type: dot_precision@5
|
289 |
+
value: 0.1578190079515335
|
290 |
+
name: Dot Precision@5
|
291 |
+
- type: dot_precision@10
|
292 |
+
value: 0.08458917076864823
|
293 |
+
name: Dot Precision@10
|
294 |
+
- type: dot_recall@1
|
295 |
+
value: 0.5675880348352896
|
296 |
+
name: Dot Recall@1
|
297 |
+
- type: dot_recall@3
|
298 |
+
value: 0.7251041272245362
|
299 |
+
name: Dot Recall@3
|
300 |
+
- type: dot_recall@5
|
301 |
+
value: 0.7890950397576676
|
302 |
+
name: Dot Recall@5
|
303 |
+
- type: dot_recall@10
|
304 |
+
value: 0.8458917076864824
|
305 |
+
name: Dot Recall@10
|
306 |
+
- type: dot_ndcg@10
|
307 |
+
value: 0.7056724990427845
|
308 |
+
name: Dot Ndcg@10
|
309 |
+
- type: dot_mrr@10
|
310 |
+
value: 0.6608194647289684
|
311 |
+
name: Dot Mrr@10
|
312 |
+
- type: dot_map@100
|
313 |
+
value: 0.6658281637529629
|
314 |
+
name: Dot Map@100
|
315 |
+
---
|
316 |
+
|
317 |
+
# SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-cos-v1
|
318 |
+
|
319 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-mpnet-base-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
320 |
+
|
321 |
+
## Model Details
|
322 |
+
|
323 |
+
### Model Description
|
324 |
+
- **Model Type:** Sentence Transformer
|
325 |
+
- **Base model:** [sentence-transformers/multi-qa-mpnet-base-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1) <!-- at revision 892b36c151c41db91e84d97d9274bf8cf1227dc0 -->
|
326 |
+
- **Maximum Sequence Length:** 512 tokens
|
327 |
+
- **Output Dimensionality:** 768 tokens
|
328 |
+
- **Similarity Function:** Cosine Similarity
|
329 |
+
<!-- - **Training Dataset:** Unknown -->
|
330 |
+
<!-- - **Language:** Unknown -->
|
331 |
+
<!-- - **License:** Unknown -->
|
332 |
+
|
333 |
+
### Model Sources
|
334 |
+
|
335 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
336 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
337 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
338 |
+
|
339 |
+
### Full Model Architecture
|
340 |
+
|
341 |
+
```
|
342 |
+
SentenceTransformer(
|
343 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
|
344 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
345 |
+
(2): Normalize()
|
346 |
+
)
|
347 |
+
```
|
348 |
+
|
349 |
+
## Usage
|
350 |
+
|
351 |
+
### Direct Usage (Sentence Transformers)
|
352 |
+
|
353 |
+
First install the Sentence Transformers library:
|
354 |
+
|
355 |
+
```bash
|
356 |
+
pip install -U sentence-transformers
|
357 |
+
```
|
358 |
+
|
359 |
+
Then you can load this model and run inference.
|
360 |
+
```python
|
361 |
+
from sentence_transformers import SentenceTransformer
|
362 |
+
|
363 |
+
# Download from the 🤗 Hub
|
364 |
+
model = SentenceTransformer("kperkins411/multi-qa-mpnet-base-cos-v1_MultipleNegativesRankingLoss")
|
365 |
+
# Run inference
|
366 |
+
sentences = [
|
367 |
+
'What steps must precede mediation?',
|
368 |
+
'11. Dispute Resolution. a. Negotiation. If a Party believes that the other Party has breached this Agreement or if there is a dispute between the Parties over the interpretation of this Agreement (a "Dispute"), the Parties will endeavor to resolve the Dispute through good faith negotiation for a period of thirty (30) days after a Party notifies the other Party of the Dispute and before either Party requests mediation or files litigation to resolve the Dispute. b. Mediation. If the Parties have been unable to resolve a Dispute through good faith negotiation as provided in the prior Subsection, a Party may request that the Parties attempt to resolve the Dispute through mediation by notifying the other Party with a copy to JAMS. The Parties will attempt to select a mutually acceptable JAMS mediator within ten (10) days of the notice requesting mediation. The mediation will be held in Lake County or Cook County, Illinois within thirty (30) days of the notice requesting mediation before a JAMS mediator and in compliance with JAMS mediation guidelines. Each party will bear its own costs in preparing for and participating in the mediation and one-half of the fees and expenses charged by JAMS for conducting the mediation. c. Litigation. If the Parties have been unable to resolve a Dispute through mediation as provided in the prior Subsection, a Party may file litigation against the other Party in a court of competent jurisdiction in the United States of America. With respect to litigation involving only the Parties or their Affiliates, the Parties irrevocably consent to the exclusive personal jurisdiction and venue of the U.S. federal and Illinois state courts of competent subject matter jurisdiction located in Lake County, Illinois or Cook County, Illinois and their respective higher courts of appeal for the limited purpose of resolving a Dispute, and the Parties waive, to the fullest extent permitted by law, any defense of inconvenient forum. The Parties waive any right to trial by jury as to any Disputes resolved through litigation. Notwithstanding the foregoing, a Party may file litigation to resolve a Dispute without undergoing either negotiation or mediation as provided in the prior Subsections for any Dispute involving: (i) infringement on intellectual property; (ii) the unauthorized use or disclosure of Confidential Information; or (iii) a request for a temporary restraining order, a preliminary or permanent injunction or any other type of equitable relief. d. Remedies. Except as expressly limited in the preceding Subsections and the other provisions in this Agreement, a Party may immediately exercise any rights and remedies available to the Party under Applicable Law upon a breach of this Agreement by the other Party. A Party will not suspend performance under or terminate this Agreement or any accepted purchase order for a product being purchased and sold under this Agreement unless: (1) the other Party is in material breach of this Agreement and has either refused to cure the material breach or has failed to cure the material breach within thirty (30) day of its receipt of written notice of the failure; and (2) the Parties have been unable to resolve the Dispute related to the material breach through negotiation or mediation, or the breaching Party has refused or failed to attempt to resolve the Dispute through negotiation or mediation, as provided in this Section. Notwithstanding the foregoing, a Party may suspend performance or terminate this Agreement or any accepted purchase order for a product being purchase and sold under this Agreement immediately on written notice to the other Party, and without providing the other Party an opportunity to cure the material breach or attempting to resolve a Dispute over the material breach by negotiation or mediation as provided in this Section, for a material breach by the other Party involving substantial harm to the reputation, goodwill and business of the non-breaching Party that cannot reasonably be avoided or fully redressed by providing the other Party an opportunity to cure the material breach. e. Late Fees and Collection Costs. If Buyer fails to pay Seller an amount owed under this Agreement by the invoice due date, then Buyer will owe Seller: (i) the delinquent amount; and (ii) a late payment fee equal to two percent (2%) of the delinquent amount for each full or partial calendar month past the invoice due date that the delinquent amount remains unpaid. In addition, if Seller has to file\n\nSource: REYNOLDS CONSUMER PRODUCTS INC., S-1, 11/15/2019\n\n\n\n\n\nlitigation to collect the amount owed and Seller prevails in the litigation, Buyer will reimburse Seller for actual, reasonable, substantiated out-of-pocket expenses incurred by Seller in collecting the delinquent amount and accrued late payment fees on the delinquent amount. Under no circumstance will the late payment fee payable to Seller exceed the amount that a creditor may lawfully impose on a debtor on a delinquent amount under Applicable Law.',
|
369 |
+
'In case OntoChem finds a novel and unexpected antiviral use of those Rejected Hit Compounds during this 2-years period, it will notify Anixa about these findings and Anixa has the right of first negotiation during a period of 6 months after this notification.',
|
370 |
+
]
|
371 |
+
embeddings = model.encode(sentences)
|
372 |
+
print(embeddings.shape)
|
373 |
+
# [3, 768]
|
374 |
+
|
375 |
+
# Get the similarity scores for the embeddings
|
376 |
+
similarities = model.similarity(embeddings, embeddings)
|
377 |
+
print(similarities.shape)
|
378 |
+
# [3, 3]
|
379 |
+
```
|
380 |
+
|
381 |
+
<!--
|
382 |
+
### Direct Usage (Transformers)
|
383 |
+
|
384 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
385 |
+
|
386 |
+
</details>
|
387 |
+
-->
|
388 |
+
|
389 |
+
<!--
|
390 |
+
### Downstream Usage (Sentence Transformers)
|
391 |
+
|
392 |
+
You can finetune this model on your own dataset.
|
393 |
+
|
394 |
+
<details><summary>Click to expand</summary>
|
395 |
+
|
396 |
+
</details>
|
397 |
+
-->
|
398 |
+
|
399 |
+
<!--
|
400 |
+
### Out-of-Scope Use
|
401 |
+
|
402 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
403 |
+
-->
|
404 |
+
|
405 |
+
## Evaluation
|
406 |
+
|
407 |
+
### Metrics
|
408 |
+
|
409 |
+
#### Information Retrieval
|
410 |
+
* Dataset: `multi-qa-mpnet-base-cos-v1`
|
411 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
412 |
+
|
413 |
+
| Metric | Value |
|
414 |
+
|:--------------------|:-----------|
|
415 |
+
| cosine_accuracy@1 | 0.5676 |
|
416 |
+
| cosine_accuracy@3 | 0.7251 |
|
417 |
+
| cosine_accuracy@5 | 0.7891 |
|
418 |
+
| cosine_accuracy@10 | 0.8459 |
|
419 |
+
| cosine_precision@1 | 0.5676 |
|
420 |
+
| cosine_precision@3 | 0.2417 |
|
421 |
+
| cosine_precision@5 | 0.1578 |
|
422 |
+
| cosine_precision@10 | 0.0846 |
|
423 |
+
| cosine_recall@1 | 0.5676 |
|
424 |
+
| cosine_recall@3 | 0.7251 |
|
425 |
+
| cosine_recall@5 | 0.7891 |
|
426 |
+
| cosine_recall@10 | 0.8459 |
|
427 |
+
| cosine_ndcg@10 | 0.7057 |
|
428 |
+
| cosine_mrr@10 | 0.6608 |
|
429 |
+
| **cosine_map@100** | **0.6658** |
|
430 |
+
| dot_accuracy@1 | 0.5676 |
|
431 |
+
| dot_accuracy@3 | 0.7251 |
|
432 |
+
| dot_accuracy@5 | 0.7891 |
|
433 |
+
| dot_accuracy@10 | 0.8459 |
|
434 |
+
| dot_precision@1 | 0.5676 |
|
435 |
+
| dot_precision@3 | 0.2417 |
|
436 |
+
| dot_precision@5 | 0.1578 |
|
437 |
+
| dot_precision@10 | 0.0846 |
|
438 |
+
| dot_recall@1 | 0.5676 |
|
439 |
+
| dot_recall@3 | 0.7251 |
|
440 |
+
| dot_recall@5 | 0.7891 |
|
441 |
+
| dot_recall@10 | 0.8459 |
|
442 |
+
| dot_ndcg@10 | 0.7057 |
|
443 |
+
| dot_mrr@10 | 0.6608 |
|
444 |
+
| dot_map@100 | 0.6658 |
|
445 |
+
|
446 |
+
<!--
|
447 |
+
## Bias, Risks and Limitations
|
448 |
+
|
449 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
450 |
+
-->
|
451 |
+
|
452 |
+
<!--
|
453 |
+
### Recommendations
|
454 |
+
|
455 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
456 |
+
-->
|
457 |
+
|
458 |
+
## Training Details
|
459 |
+
|
460 |
+
### Training Dataset
|
461 |
+
|
462 |
+
#### Unnamed Dataset
|
463 |
+
|
464 |
+
|
465 |
+
* Size: 491,850 training samples
|
466 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
467 |
+
* Approximate statistics based on the first 1000 samples:
|
468 |
+
| | anchor | positive | negative |
|
469 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
470 |
+
| type | string | string | string |
|
471 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 17.09 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 102.69 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 103.91 tokens</li><li>max: 512 tokens</li></ul> |
|
472 |
+
* Samples:
|
473 |
+
| anchor | positive | negative |
|
474 |
+
|:--------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
475 |
+
| <code>What safeguards are in place to protect the information obtained from third-party sources?</code> | <code>Information We Collect From Other Sources We may also receive information from other sources and combine that with information we collect through our Services. For example: If you choose to link, create, or log in to your Uber account with a payment provider (e.g., Google Wallet) or social media service (e.g., Facebook), or if you engage with a separate app or website that uses our API (or whose API we use), we may receive information about you or your connections from that site or app.</code> | <code>Use of cookies and other technology to collect information.</code> |
|
476 |
+
| <code>What safeguards are in place to protect the information obtained from third-party sources?</code> | <code>Information We Collect From Other Sources We may also receive information from other sources and combine that with information we collect through our Services. For example: If you choose to link, create, or log in to your Uber account with a payment provider (e.g., Google Wallet) or social media service (e.g., Facebook), or if you engage with a separate app or website that uses our API (or whose API we use), we may receive information about you or your connections from that site or app.</code> | <code>c. The obligations specified in this Article shall not apply to Information for which the receiving Party can reasonably demonstrate that such Information: iii. becomes known to the receiving Party through disclosure by sources other than the disclosing Party, having a right to disclose such Information,</code> |
|
477 |
+
| <code>What safeguards are in place to protect the information obtained from third-party sources?</code> | <code>Information We Collect From Other Sources We may also receive information from other sources and combine that with information we collect through our Services. For example: If you choose to link, create, or log in to your Uber account with a payment provider (e.g., Google Wallet) or social media service (e.g., Facebook), or if you engage with a separate app or website that uses our API (or whose API we use), we may receive information about you or your connections from that site or app.</code> | <code>You also may be able to link an account from a social networking service (e.g., Facebook, Google+, Yahoo!) to an account through our Services. This may allow you to use your credentials from the other site or service to sign in to certain features on our Services. If you link your account from a third-party site or service, we may collect information from those third-party accounts, and any information that we collect will be governed by this Privacy Policy.</code> |
|
478 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
479 |
+
```json
|
480 |
+
{
|
481 |
+
"scale": 20.0,
|
482 |
+
"similarity_fct": "cos_sim"
|
483 |
+
}
|
484 |
+
```
|
485 |
+
|
486 |
+
### Evaluation Dataset
|
487 |
+
|
488 |
+
#### Unnamed Dataset
|
489 |
+
|
490 |
+
|
491 |
+
* Size: 6,000 evaluation samples
|
492 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
493 |
+
* Approximate statistics based on the first 1000 samples:
|
494 |
+
| | anchor | positive | negative |
|
495 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
496 |
+
| type | string | string | string |
|
497 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 23.16 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 96.66 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 102.41 tokens</li><li>max: 512 tokens</li></ul> |
|
498 |
+
* Samples:
|
499 |
+
| anchor | positive | negative |
|
500 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
501 |
+
| <code>What term is used to describe sensitive materials unique to the involved entities and not accessible by the general populace, regardless of its physical state or the manner of its revelation?</code> | <code>For purposes of this Agreement, "Confidential Information" means any data or information that is proprietary to the Parties and not generally known to the public, whether in tangible or intangible form, whenever and however disclosed, including but not limited to:</code> | <code>6.1 In this Agreement, "Confidential Information" means information disclosed by (or on behalf of) one party to the other party under this Agreement that is marked as confidential or, from its nature, content or the circumstances in which it is disclosed, might reasonably be supposed to be confidential, including the terms and conditions (including the Exhibits) of this Agreement. It does not include information that the recipient already knew, that becomes public through no fault of the recipient, that was independently developed by the recipient or that was lawfully given to the recipient by a third party.</code> |
|
502 |
+
| <code>What term is used to describe sensitive materials unique to the involved entities and not accessible by the general populace, regardless of its physical state or the manner of its revelation?</code> | <code>For purposes of this Agreement, "Confidential Information" means any data or information that is proprietary to the Parties and not generally known to the public, whether in tangible or intangible form, whenever and however disclosed, including but not limited to:</code> | <code>1. “Confidential Information” shall mean the Purpose (including the contemplated transaction), identity of, and any discussions or negotiations between, the Parties, existence of this Agreement, and any and all information whether in oral, written, graphic or electronic form, including but not limited to, data, know-how and any and all subject matter (whether patentable or not, including without limitation any derivatives thereof) pertaining to Verenium’s research, financial data, sales information, inventions, development, materials, technology, trade secrets, work in process, marketing, business plans, regulatory information and strategies, scientific, engineering and/or manufacturing processes or equipment, protocols, assays, strains, compounds, genes, gene pathways, enzymes, peptides, the commercial applications of genes, gene pathways, enzymes, peptides, accessing microbial diversity, manipulating and modifying genes and gene pathways, identifying bioactive compounds through recombinant techniques and any other elements of Verenium’s business which Verenium considers to be of value, including its present or future products, projections, sales, pricing, customers, employees, investors and contractual relationships.</code> |
|
503 |
+
| <code>What term is used to describe sensitive materials unique to the involved entities and not accessible by the general populace, regardless of its physical state or the manner of its revelation?</code> | <code>For purposes of this Agreement, "Confidential Information" means any data or information that is proprietary to the Parties and not generally known to the public, whether in tangible or intangible form, whenever and however disclosed, including but not limited to:</code> | <code>Confidential Information means any information disclosed by one party (the ‘Discloser’) to the other (the ‘Recipient’) relating directly or indirectly to Name of Technology/Project, file # which is identified by the Discloser, either orally or in writing, as confidential, either at the time of disclosure or, if disclosed orally, confirmed in writing within thirty (30) days following the original disclosure.</code> |
|
504 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
505 |
+
```json
|
506 |
+
{
|
507 |
+
"scale": 20.0,
|
508 |
+
"similarity_fct": "cos_sim"
|
509 |
+
}
|
510 |
+
```
|
511 |
+
|
512 |
+
### Training Hyperparameters
|
513 |
+
#### Non-Default Hyperparameters
|
514 |
+
|
515 |
+
- `eval_strategy`: epoch
|
516 |
+
- `per_device_train_batch_size`: 32
|
517 |
+
- `per_device_eval_batch_size`: 32
|
518 |
+
- `learning_rate`: 2e-05
|
519 |
+
- `num_train_epochs`: 2
|
520 |
+
- `warmup_ratio`: 0.1
|
521 |
+
- `fp16`: True
|
522 |
+
- `load_best_model_at_end`: True
|
523 |
+
|
524 |
+
#### All Hyperparameters
|
525 |
+
<details><summary>Click to expand</summary>
|
526 |
+
|
527 |
+
- `overwrite_output_dir`: False
|
528 |
+
- `do_predict`: False
|
529 |
+
- `eval_strategy`: epoch
|
530 |
+
- `prediction_loss_only`: True
|
531 |
+
- `per_device_train_batch_size`: 32
|
532 |
+
- `per_device_eval_batch_size`: 32
|
533 |
+
- `per_gpu_train_batch_size`: None
|
534 |
+
- `per_gpu_eval_batch_size`: None
|
535 |
+
- `gradient_accumulation_steps`: 1
|
536 |
+
- `eval_accumulation_steps`: None
|
537 |
+
- `learning_rate`: 2e-05
|
538 |
+
- `weight_decay`: 0.0
|
539 |
+
- `adam_beta1`: 0.9
|
540 |
+
- `adam_beta2`: 0.999
|
541 |
+
- `adam_epsilon`: 1e-08
|
542 |
+
- `max_grad_norm`: 1.0
|
543 |
+
- `num_train_epochs`: 2
|
544 |
+
- `max_steps`: -1
|
545 |
+
- `lr_scheduler_type`: linear
|
546 |
+
- `lr_scheduler_kwargs`: {}
|
547 |
+
- `warmup_ratio`: 0.1
|
548 |
+
- `warmup_steps`: 0
|
549 |
+
- `log_level`: passive
|
550 |
+
- `log_level_replica`: warning
|
551 |
+
- `log_on_each_node`: True
|
552 |
+
- `logging_nan_inf_filter`: True
|
553 |
+
- `save_safetensors`: True
|
554 |
+
- `save_on_each_node`: False
|
555 |
+
- `save_only_model`: False
|
556 |
+
- `restore_callback_states_from_checkpoint`: False
|
557 |
+
- `no_cuda`: False
|
558 |
+
- `use_cpu`: False
|
559 |
+
- `use_mps_device`: False
|
560 |
+
- `seed`: 42
|
561 |
+
- `data_seed`: None
|
562 |
+
- `jit_mode_eval`: False
|
563 |
+
- `use_ipex`: False
|
564 |
+
- `bf16`: False
|
565 |
+
- `fp16`: True
|
566 |
+
- `fp16_opt_level`: O1
|
567 |
+
- `half_precision_backend`: auto
|
568 |
+
- `bf16_full_eval`: False
|
569 |
+
- `fp16_full_eval`: False
|
570 |
+
- `tf32`: None
|
571 |
+
- `local_rank`: 0
|
572 |
+
- `ddp_backend`: None
|
573 |
+
- `tpu_num_cores`: None
|
574 |
+
- `tpu_metrics_debug`: False
|
575 |
+
- `debug`: []
|
576 |
+
- `dataloader_drop_last`: False
|
577 |
+
- `dataloader_num_workers`: 0
|
578 |
+
- `dataloader_prefetch_factor`: None
|
579 |
+
- `past_index`: -1
|
580 |
+
- `disable_tqdm`: False
|
581 |
+
- `remove_unused_columns`: True
|
582 |
+
- `label_names`: None
|
583 |
+
- `load_best_model_at_end`: True
|
584 |
+
- `ignore_data_skip`: False
|
585 |
+
- `fsdp`: []
|
586 |
+
- `fsdp_min_num_params`: 0
|
587 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
588 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
589 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
590 |
+
- `deepspeed`: None
|
591 |
+
- `label_smoothing_factor`: 0.0
|
592 |
+
- `optim`: adamw_torch
|
593 |
+
- `optim_args`: None
|
594 |
+
- `adafactor`: False
|
595 |
+
- `group_by_length`: False
|
596 |
+
- `length_column_name`: length
|
597 |
+
- `ddp_find_unused_parameters`: None
|
598 |
+
- `ddp_bucket_cap_mb`: None
|
599 |
+
- `ddp_broadcast_buffers`: False
|
600 |
+
- `dataloader_pin_memory`: True
|
601 |
+
- `dataloader_persistent_workers`: False
|
602 |
+
- `skip_memory_metrics`: True
|
603 |
+
- `use_legacy_prediction_loop`: False
|
604 |
+
- `push_to_hub`: False
|
605 |
+
- `resume_from_checkpoint`: None
|
606 |
+
- `hub_model_id`: None
|
607 |
+
- `hub_strategy`: every_save
|
608 |
+
- `hub_private_repo`: False
|
609 |
+
- `hub_always_push`: False
|
610 |
+
- `gradient_checkpointing`: False
|
611 |
+
- `gradient_checkpointing_kwargs`: None
|
612 |
+
- `include_inputs_for_metrics`: False
|
613 |
+
- `eval_do_concat_batches`: True
|
614 |
+
- `fp16_backend`: auto
|
615 |
+
- `push_to_hub_model_id`: None
|
616 |
+
- `push_to_hub_organization`: None
|
617 |
+
- `mp_parameters`:
|
618 |
+
- `auto_find_batch_size`: False
|
619 |
+
- `full_determinism`: False
|
620 |
+
- `torchdynamo`: None
|
621 |
+
- `ray_scope`: last
|
622 |
+
- `ddp_timeout`: 1800
|
623 |
+
- `torch_compile`: False
|
624 |
+
- `torch_compile_backend`: None
|
625 |
+
- `torch_compile_mode`: None
|
626 |
+
- `dispatch_batches`: None
|
627 |
+
- `split_batches`: None
|
628 |
+
- `include_tokens_per_second`: False
|
629 |
+
- `include_num_input_tokens_seen`: False
|
630 |
+
- `neftune_noise_alpha`: None
|
631 |
+
- `optim_target_modules`: None
|
632 |
+
- `batch_eval_metrics`: False
|
633 |
+
- `batch_sampler`: batch_sampler
|
634 |
+
- `multi_dataset_batch_sampler`: proportional
|
635 |
+
|
636 |
+
</details>
|
637 |
+
|
638 |
+
### Training Logs
|
639 |
+
<details><summary>Click to expand</summary>
|
640 |
+
|
641 |
+
| Epoch | Step | Training Loss | loss | multi-qa-mpnet-base-cos-v1_cosine_map@100 |
|
642 |
+
|:-------:|:---------:|:-------------:|:---------:|:-----------------------------------------:|
|
643 |
+
| 0 | 0 | - | - | 0.4784 |
|
644 |
+
| 0.0065 | 100 | 0.9364 | - | - |
|
645 |
+
| 0.0130 | 200 | 0.8395 | - | - |
|
646 |
+
| 0.0195 | 300 | 0.7295 | - | - |
|
647 |
+
| 0.0260 | 400 | 0.7025 | - | - |
|
648 |
+
| 0.0325 | 500 | 0.6212 | - | - |
|
649 |
+
| 0.0390 | 600 | 0.6038 | - | - |
|
650 |
+
| 0.0455 | 700 | 0.5723 | - | - |
|
651 |
+
| 0.0520 | 800 | 0.552 | - | - |
|
652 |
+
| 0.0586 | 900 | 0.5407 | - | - |
|
653 |
+
| 0.0651 | 1000 | 0.5332 | - | - |
|
654 |
+
| 0.0716 | 1100 | 0.4981 | - | - |
|
655 |
+
| 0.0781 | 1200 | 0.4671 | - | - |
|
656 |
+
| 0.0846 | 1300 | 0.4756 | - | - |
|
657 |
+
| 0.0911 | 1400 | 0.4461 | - | - |
|
658 |
+
| 0.0976 | 1500 | 0.4425 | - | - |
|
659 |
+
| 0.1041 | 1600 | 0.4329 | - | - |
|
660 |
+
| 0.1106 | 1700 | 0.4412 | - | - |
|
661 |
+
| 0.1171 | 1800 | 0.3952 | - | - |
|
662 |
+
| 0.1236 | 1900 | 0.4179 | - | - |
|
663 |
+
| 0.1301 | 2000 | 0.4157 | - | - |
|
664 |
+
| 0.1366 | 2100 | 0.4014 | - | - |
|
665 |
+
| 0.1431 | 2200 | 0.3747 | - | - |
|
666 |
+
| 0.1496 | 2300 | 0.3596 | - | - |
|
667 |
+
| 0.1561 | 2400 | 0.3571 | - | - |
|
668 |
+
| 0.1626 | 2500 | 0.3717 | - | - |
|
669 |
+
| 0.1691 | 2600 | 0.3369 | - | - |
|
670 |
+
| 0.1757 | 2700 | 0.3508 | - | - |
|
671 |
+
| 0.1822 | 2800 | 0.3281 | - | - |
|
672 |
+
| 0.1887 | 2900 | 0.3285 | - | - |
|
673 |
+
| 0.1952 | 3000 | 0.3423 | - | - |
|
674 |
+
| 0.2017 | 3100 | 0.2967 | - | - |
|
675 |
+
| 0.2082 | 3200 | 0.3076 | - | - |
|
676 |
+
| 0.2147 | 3300 | 0.3223 | - | - |
|
677 |
+
| 0.2212 | 3400 | 0.3097 | - | - |
|
678 |
+
| 0.2277 | 3500 | 0.2964 | - | - |
|
679 |
+
| 0.2342 | 3600 | 0.2836 | - | - |
|
680 |
+
| 0.2407 | 3700 | 0.3007 | - | - |
|
681 |
+
| 0.2472 | 3800 | 0.2882 | - | - |
|
682 |
+
| 0.2537 | 3900 | 0.2852 | - | - |
|
683 |
+
| 0.2602 | 4000 | 0.2923 | - | - |
|
684 |
+
| 0.2667 | 4100 | 0.2938 | - | - |
|
685 |
+
| 0.2732 | 4200 | 0.2597 | - | - |
|
686 |
+
| 0.2797 | 4300 | 0.2423 | - | - |
|
687 |
+
| 0.2863 | 4400 | 0.2719 | - | - |
|
688 |
+
| 0.2928 | 4500 | 0.2546 | - | - |
|
689 |
+
| 0.2993 | 4600 | 0.2545 | - | - |
|
690 |
+
| 0.3058 | 4700 | 0.2538 | - | - |
|
691 |
+
| 0.3123 | 4800 | 0.249 | - | - |
|
692 |
+
| 0.3188 | 4900 | 0.2473 | - | - |
|
693 |
+
| 0.3253 | 5000 | 0.2398 | - | - |
|
694 |
+
| 0.3318 | 5100 | 0.254 | - | - |
|
695 |
+
| 0.3383 | 5200 | 0.2399 | - | - |
|
696 |
+
| 0.3448 | 5300 | 0.2367 | - | - |
|
697 |
+
| 0.3513 | 5400 | 0.2208 | - | - |
|
698 |
+
| 0.3578 | 5500 | 0.2201 | - | - |
|
699 |
+
| 0.3643 | 5600 | 0.2384 | - | - |
|
700 |
+
| 0.3708 | 5700 | 0.2166 | - | - |
|
701 |
+
| 0.3773 | 5800 | 0.1949 | - | - |
|
702 |
+
| 0.3838 | 5900 | 0.2127 | - | - |
|
703 |
+
| 0.3903 | 6000 | 0.2032 | - | - |
|
704 |
+
| 0.3969 | 6100 | 0.2073 | - | - |
|
705 |
+
| 0.4034 | 6200 | 0.2124 | - | - |
|
706 |
+
| 0.4099 | 6300 | 0.1963 | - | - |
|
707 |
+
| 0.4164 | 6400 | 0.1965 | - | - |
|
708 |
+
| 0.4229 | 6500 | 0.2088 | - | - |
|
709 |
+
| 0.4294 | 6600 | 0.2079 | - | - |
|
710 |
+
| 0.4359 | 6700 | 0.1902 | - | - |
|
711 |
+
| 0.4424 | 6800 | 0.1785 | - | - |
|
712 |
+
| 0.4489 | 6900 | 0.2063 | - | - |
|
713 |
+
| 0.4554 | 7000 | 0.1781 | - | - |
|
714 |
+
| 0.4619 | 7100 | 0.172 | - | - |
|
715 |
+
| 0.4684 | 7200 | 0.1733 | - | - |
|
716 |
+
| 0.4749 | 7300 | 0.192 | - | - |
|
717 |
+
| 0.4814 | 7400 | 0.195 | - | - |
|
718 |
+
| 0.4879 | 7500 | 0.1926 | - | - |
|
719 |
+
| 0.4944 | 7600 | 0.1754 | - | - |
|
720 |
+
| 0.5009 | 7700 | 0.1859 | - | - |
|
721 |
+
| 0.5074 | 7800 | 0.1779 | - | - |
|
722 |
+
| 0.5140 | 7900 | 0.1714 | - | - |
|
723 |
+
| 0.5205 | 8000 | 0.1639 | - | - |
|
724 |
+
| 0.5270 | 8100 | 0.1527 | - | - |
|
725 |
+
| 0.5335 | 8200 | 0.1695 | - | - |
|
726 |
+
| 0.5400 | 8300 | 0.1501 | - | - |
|
727 |
+
| 0.5465 | 8400 | 0.1636 | - | - |
|
728 |
+
| 0.5530 | 8500 | 0.166 | - | - |
|
729 |
+
| 0.5595 | 8600 | 0.1554 | - | - |
|
730 |
+
| 0.5660 | 8700 | 0.1571 | - | - |
|
731 |
+
| 0.5725 | 8800 | 0.1506 | - | - |
|
732 |
+
| 0.5790 | 8900 | 0.1504 | - | - |
|
733 |
+
| 0.5855 | 9000 | 0.1601 | - | - |
|
734 |
+
| 0.5920 | 9100 | 0.1413 | - | - |
|
735 |
+
| 0.5985 | 9200 | 0.15 | - | - |
|
736 |
+
| 0.6050 | 9300 | 0.1473 | - | - |
|
737 |
+
| 0.6115 | 9400 | 0.1509 | - | - |
|
738 |
+
| 0.6180 | 9500 | 0.1555 | - | - |
|
739 |
+
| 0.6246 | 9600 | 0.1477 | - | - |
|
740 |
+
| 0.6311 | 9700 | 0.1399 | - | - |
|
741 |
+
| 0.6376 | 9800 | 0.1422 | - | - |
|
742 |
+
| 0.6441 | 9900 | 0.1383 | - | - |
|
743 |
+
| 0.6506 | 10000 | 0.1299 | - | - |
|
744 |
+
| 0.6571 | 10100 | 0.1328 | - | - |
|
745 |
+
| 0.6636 | 10200 | 0.147 | - | - |
|
746 |
+
| 0.6701 | 10300 | 0.152 | - | - |
|
747 |
+
| 0.6766 | 10400 | 0.136 | - | - |
|
748 |
+
| 0.6831 | 10500 | 0.1409 | - | - |
|
749 |
+
| 0.6896 | 10600 | 0.1298 | - | - |
|
750 |
+
| 0.6961 | 10700 | 0.1359 | - | - |
|
751 |
+
| 0.7026 | 10800 | 0.137 | - | - |
|
752 |
+
| 0.7091 | 10900 | 0.1245 | - | - |
|
753 |
+
| 0.7156 | 11000 | 0.1303 | - | - |
|
754 |
+
| 0.7221 | 11100 | 0.1307 | - | - |
|
755 |
+
| 0.7286 | 11200 | 0.1171 | - | - |
|
756 |
+
| 0.7352 | 11300 | 0.1319 | - | - |
|
757 |
+
| 0.7417 | 11400 | 0.1296 | - | - |
|
758 |
+
| 0.7482 | 11500 | 0.1344 | - | - |
|
759 |
+
| 0.7547 | 11600 | 0.1195 | - | - |
|
760 |
+
| 0.7612 | 11700 | 0.1048 | - | - |
|
761 |
+
| 0.7677 | 11800 | 0.1242 | - | - |
|
762 |
+
| 0.7742 | 11900 | 0.1163 | - | - |
|
763 |
+
| 0.7807 | 12000 | 0.1253 | - | - |
|
764 |
+
| 0.7872 | 12100 | 0.1215 | - | - |
|
765 |
+
| 0.7937 | 12200 | 0.1092 | - | - |
|
766 |
+
| 0.8002 | 12300 | 0.1131 | - | - |
|
767 |
+
| 0.8067 | 12400 | 0.1155 | - | - |
|
768 |
+
| 0.8132 | 12500 | 0.1211 | - | - |
|
769 |
+
| 0.8197 | 12600 | 0.1235 | - | - |
|
770 |
+
| 0.8262 | 12700 | 0.1242 | - | - |
|
771 |
+
| 0.8327 | 12800 | 0.1068 | - | - |
|
772 |
+
| 0.8392 | 12900 | 0.1352 | - | - |
|
773 |
+
| 0.8457 | 13000 | 0.1156 | - | - |
|
774 |
+
| 0.8523 | 13100 | 0.129 | - | - |
|
775 |
+
| 0.8588 | 13200 | 0.1113 | - | - |
|
776 |
+
| 0.8653 | 13300 | 0.1165 | - | - |
|
777 |
+
| 0.8718 | 13400 | 0.1083 | - | - |
|
778 |
+
| 0.8783 | 13500 | 0.1081 | - | - |
|
779 |
+
| 0.8848 | 13600 | 0.105 | - | - |
|
780 |
+
| 0.8913 | 13700 | 0.1088 | - | - |
|
781 |
+
| 0.8978 | 13800 | 0.1067 | - | - |
|
782 |
+
| 0.9043 | 13900 | 0.1032 | - | - |
|
783 |
+
| 0.9108 | 14000 | 0.0989 | - | - |
|
784 |
+
| 0.9173 | 14100 | 0.1044 | - | - |
|
785 |
+
| 0.9238 | 14200 | 0.1032 | - | - |
|
786 |
+
| 0.9303 | 14300 | 0.108 | - | - |
|
787 |
+
| 0.9368 | 14400 | 0.0905 | - | - |
|
788 |
+
| 0.9433 | 14500 | 0.098 | - | - |
|
789 |
+
| 0.9498 | 14600 | 0.12 | - | - |
|
790 |
+
| 0.9563 | 14700 | 0.122 | - | - |
|
791 |
+
| 0.9629 | 14800 | 0.1011 | - | - |
|
792 |
+
| 0.9694 | 14900 | 0.0943 | - | - |
|
793 |
+
| 0.9759 | 15000 | 0.1031 | - | - |
|
794 |
+
| 0.9824 | 15100 | 0.1099 | - | - |
|
795 |
+
| 0.9889 | 15200 | 0.1034 | - | - |
|
796 |
+
| 0.9954 | 15300 | 0.0896 | - | - |
|
797 |
+
| **1.0** | **15371** | **-** | **0.441** | **-** |
|
798 |
+
| 1.0019 | 15400 | 0.0887 | - | - |
|
799 |
+
| 1.0084 | 15500 | 0.0958 | - | - |
|
800 |
+
| 1.0149 | 15600 | 0.0929 | - | - |
|
801 |
+
| 1.0214 | 15700 | 0.083 | - | - |
|
802 |
+
| 1.0279 | 15800 | 0.0897 | - | - |
|
803 |
+
| 1.0344 | 15900 | 0.0924 | - | - |
|
804 |
+
| 1.0409 | 16000 | 0.0897 | - | - |
|
805 |
+
| 1.0474 | 16100 | 0.0912 | - | - |
|
806 |
+
| 1.0539 | 16200 | 0.0912 | - | - |
|
807 |
+
| 1.0604 | 16300 | 0.0851 | - | - |
|
808 |
+
| 1.0669 | 16400 | 0.0779 | - | - |
|
809 |
+
| 1.0735 | 16500 | 0.0886 | - | - |
|
810 |
+
| 1.0800 | 16600 | 0.0876 | - | - |
|
811 |
+
| 1.0865 | 16700 | 0.0831 | - | - |
|
812 |
+
| 1.0930 | 16800 | 0.0858 | - | - |
|
813 |
+
| 1.0995 | 16900 | 0.0821 | - | - |
|
814 |
+
| 1.1060 | 17000 | 0.0835 | - | - |
|
815 |
+
| 1.1125 | 17100 | 0.0907 | - | - |
|
816 |
+
| 1.1190 | 17200 | 0.0764 | - | - |
|
817 |
+
| 1.1255 | 17300 | 0.0853 | - | - |
|
818 |
+
| 1.1320 | 17400 | 0.1002 | - | - |
|
819 |
+
| 1.1385 | 17500 | 0.0717 | - | - |
|
820 |
+
| 1.1450 | 17600 | 0.0926 | - | - |
|
821 |
+
| 1.1515 | 17700 | 0.0864 | - | - |
|
822 |
+
| 1.1580 | 17800 | 0.0758 | - | - |
|
823 |
+
| 1.1645 | 17900 | 0.0806 | - | - |
|
824 |
+
| 1.1710 | 18000 | 0.0866 | - | - |
|
825 |
+
| 1.1775 | 18100 | 0.0876 | - | - |
|
826 |
+
| 1.1840 | 18200 | 0.0905 | - | - |
|
827 |
+
| 1.1906 | 18300 | 0.0747 | - | - |
|
828 |
+
| 1.1971 | 18400 | 0.0731 | - | - |
|
829 |
+
| 1.2036 | 18500 | 0.0724 | - | - |
|
830 |
+
| 1.2101 | 18600 | 0.0835 | - | - |
|
831 |
+
| 1.2166 | 18700 | 0.0809 | - | - |
|
832 |
+
| 1.2231 | 18800 | 0.0722 | - | - |
|
833 |
+
| 1.2296 | 18900 | 0.0799 | - | - |
|
834 |
+
| 1.2361 | 19000 | 0.0675 | - | - |
|
835 |
+
| 1.2426 | 19100 | 0.0704 | - | - |
|
836 |
+
| 1.2491 | 19200 | 0.0749 | - | - |
|
837 |
+
| 1.2556 | 19300 | 0.0743 | - | - |
|
838 |
+
| 1.2621 | 19400 | 0.0798 | - | - |
|
839 |
+
| 1.2686 | 19500 | 0.0691 | - | - |
|
840 |
+
| 1.2751 | 19600 | 0.0782 | - | - |
|
841 |
+
| 1.2816 | 19700 | 0.0776 | - | - |
|
842 |
+
| 1.2881 | 19800 | 0.0807 | - | - |
|
843 |
+
| 1.2946 | 19900 | 0.0881 | - | - |
|
844 |
+
| 1.3012 | 20000 | 0.081 | - | - |
|
845 |
+
| 1.3077 | 20100 | 0.073 | - | - |
|
846 |
+
| 1.3142 | 20200 | 0.0758 | - | - |
|
847 |
+
| 1.3207 | 20300 | 0.0752 | - | - |
|
848 |
+
| 1.3272 | 20400 | 0.082 | - | - |
|
849 |
+
| 1.3337 | 20500 | 0.0763 | - | - |
|
850 |
+
| 1.3402 | 20600 | 0.0727 | - | - |
|
851 |
+
| 1.3467 | 20700 | 0.0793 | - | - |
|
852 |
+
| 1.3532 | 20800 | 0.0759 | - | - |
|
853 |
+
| 1.3597 | 20900 | 0.0666 | - | - |
|
854 |
+
| 1.3662 | 21000 | 0.0714 | - | - |
|
855 |
+
| 1.3727 | 21100 | 0.0636 | - | - |
|
856 |
+
| 1.3792 | 21200 | 0.0724 | - | - |
|
857 |
+
| 1.3857 | 21300 | 0.0703 | - | - |
|
858 |
+
| 1.3922 | 21400 | 0.0687 | - | - |
|
859 |
+
| 1.3987 | 21500 | 0.0748 | - | - |
|
860 |
+
| 1.4052 | 21600 | 0.0761 | - | - |
|
861 |
+
| 1.4117 | 21700 | 0.059 | - | - |
|
862 |
+
| 1.4183 | 21800 | 0.0717 | - | - |
|
863 |
+
| 1.4248 | 21900 | 0.0631 | - | - |
|
864 |
+
| 1.4313 | 22000 | 0.0591 | - | - |
|
865 |
+
| 1.4378 | 22100 | 0.0729 | - | - |
|
866 |
+
| 1.4443 | 22200 | 0.0825 | - | - |
|
867 |
+
| 1.4508 | 22300 | 0.0761 | - | - |
|
868 |
+
| 1.4573 | 22400 | 0.0734 | - | - |
|
869 |
+
| 1.4638 | 22500 | 0.0678 | - | - |
|
870 |
+
| 1.4703 | 22600 | 0.0674 | - | - |
|
871 |
+
| 1.4768 | 22700 | 0.0638 | - | - |
|
872 |
+
| 1.4833 | 22800 | 0.0763 | - | - |
|
873 |
+
| 1.4898 | 22900 | 0.0686 | - | - |
|
874 |
+
| 1.4963 | 23000 | 0.0743 | - | - |
|
875 |
+
| 1.5028 | 23100 | 0.0685 | - | - |
|
876 |
+
| 1.5093 | 23200 | 0.0645 | - | - |
|
877 |
+
| 1.5158 | 23300 | 0.0611 | - | - |
|
878 |
+
| 1.5223 | 23400 | 0.0678 | - | - |
|
879 |
+
| 1.5289 | 23500 | 0.0693 | - | - |
|
880 |
+
| 1.5354 | 23600 | 0.0694 | - | - |
|
881 |
+
| 1.5419 | 23700 | 0.0594 | - | - |
|
882 |
+
| 1.5484 | 23800 | 0.0635 | - | - |
|
883 |
+
| 1.5549 | 23900 | 0.069 | - | - |
|
884 |
+
| 1.5614 | 24000 | 0.0609 | - | - |
|
885 |
+
| 1.5679 | 24100 | 0.0673 | - | - |
|
886 |
+
| 1.5744 | 24200 | 0.062 | - | - |
|
887 |
+
| 1.5809 | 24300 | 0.0652 | - | - |
|
888 |
+
| 1.5874 | 24400 | 0.0685 | - | - |
|
889 |
+
| 1.5939 | 24500 | 0.0648 | - | - |
|
890 |
+
| 1.6004 | 24600 | 0.0612 | - | - |
|
891 |
+
| 1.6069 | 24700 | 0.0624 | - | - |
|
892 |
+
| 1.6134 | 24800 | 0.0635 | - | - |
|
893 |
+
| 1.6199 | 24900 | 0.0585 | - | - |
|
894 |
+
| 1.6264 | 25000 | 0.066 | - | - |
|
895 |
+
| 1.6329 | 25100 | 0.0678 | - | - |
|
896 |
+
| 1.6395 | 25200 | 0.0619 | - | - |
|
897 |
+
| 1.6460 | 25300 | 0.066 | - | - |
|
898 |
+
| 1.6525 | 25400 | 0.058 | - | - |
|
899 |
+
| 1.6590 | 25500 | 0.0649 | - | - |
|
900 |
+
| 1.6655 | 25600 | 0.0626 | - | - |
|
901 |
+
| 1.6720 | 25700 | 0.0687 | - | - |
|
902 |
+
| 1.6785 | 25800 | 0.0593 | - | - |
|
903 |
+
| 1.6850 | 25900 | 0.0632 | - | - |
|
904 |
+
| 1.6915 | 26000 | 0.0705 | - | - |
|
905 |
+
| 1.6980 | 26100 | 0.0598 | - | - |
|
906 |
+
| 1.7045 | 26200 | 0.0667 | - | - |
|
907 |
+
| 1.7110 | 26300 | 0.0595 | - | - |
|
908 |
+
| 1.7175 | 26400 | 0.0635 | - | - |
|
909 |
+
| 1.7240 | 26500 | 0.065 | - | - |
|
910 |
+
| 1.7305 | 26600 | 0.0556 | - | - |
|
911 |
+
| 1.7370 | 26700 | 0.0559 | - | - |
|
912 |
+
| 1.7435 | 26800 | 0.0552 | - | - |
|
913 |
+
| 1.7500 | 26900 | 0.0577 | - | - |
|
914 |
+
| 1.7566 | 27000 | 0.0666 | - | - |
|
915 |
+
| 1.7631 | 27100 | 0.06 | - | - |
|
916 |
+
| 1.7696 | 27200 | 0.0465 | - | - |
|
917 |
+
| 1.7761 | 27300 | 0.0621 | - | - |
|
918 |
+
| 1.7826 | 27400 | 0.056 | - | - |
|
919 |
+
| 1.7891 | 27500 | 0.062 | - | - |
|
920 |
+
| 1.7956 | 27600 | 0.0554 | - | - |
|
921 |
+
| 1.8021 | 27700 | 0.0656 | - | - |
|
922 |
+
| 1.8086 | 27800 | 0.0573 | - | - |
|
923 |
+
| 1.8151 | 27900 | 0.0555 | - | - |
|
924 |
+
| 1.8216 | 28000 | 0.0611 | - | - |
|
925 |
+
| 1.8281 | 28100 | 0.0538 | - | - |
|
926 |
+
| 1.8346 | 28200 | 0.0573 | - | - |
|
927 |
+
| 1.8411 | 28300 | 0.051 | - | - |
|
928 |
+
| 1.8476 | 28400 | 0.0599 | - | - |
|
929 |
+
| 1.8541 | 28500 | 0.0592 | - | - |
|
930 |
+
| 1.8606 | 28600 | 0.0568 | - | - |
|
931 |
+
| 1.8672 | 28700 | 0.0549 | - | - |
|
932 |
+
| 1.8737 | 28800 | 0.0558 | - | - |
|
933 |
+
| 1.8802 | 28900 | 0.0545 | - | - |
|
934 |
+
| 1.8867 | 29000 | 0.048 | - | - |
|
935 |
+
| 1.8932 | 29100 | 0.056 | - | - |
|
936 |
+
| 1.8997 | 29200 | 0.054 | - | - |
|
937 |
+
| 1.9062 | 29300 | 0.06 | - | - |
|
938 |
+
| 1.9127 | 29400 | 0.0586 | - | - |
|
939 |
+
| 1.9192 | 29500 | 0.0606 | - | - |
|
940 |
+
| 1.9257 | 29600 | 0.0648 | - | - |
|
941 |
+
| 1.9322 | 29700 | 0.0601 | - | - |
|
942 |
+
| 1.9387 | 29800 | 0.0582 | - | - |
|
943 |
+
| 1.9452 | 29900 | 0.0551 | - | - |
|
944 |
+
| 1.9517 | 30000 | 0.0575 | - | - |
|
945 |
+
| 1.9582 | 30100 | 0.0547 | - | - |
|
946 |
+
| 1.9647 | 30200 | 0.0612 | - | - |
|
947 |
+
| 1.9712 | 30300 | 0.0601 | - | - |
|
948 |
+
| 1.9778 | 30400 | 0.0516 | - | - |
|
949 |
+
| 1.9843 | 30500 | 0.0503 | - | - |
|
950 |
+
| 1.9908 | 30600 | 0.0561 | - | - |
|
951 |
+
| 1.9973 | 30700 | 0.0558 | - | - |
|
952 |
+
| 2.0 | 30742 | - | 0.4783 | 0.6658 |
|
953 |
+
|
954 |
+
* The bold row denotes the saved checkpoint.
|
955 |
+
</details>
|
956 |
+
|
957 |
+
### Framework Versions
|
958 |
+
- Python: 3.11.9
|
959 |
+
- Sentence Transformers: 3.1.0.dev0
|
960 |
+
- Transformers: 4.41.2
|
961 |
+
- PyTorch: 2.4.0+cu121
|
962 |
+
- Accelerate: 0.31.0
|
963 |
+
- Datasets: 2.19.1
|
964 |
+
- Tokenizers: 0.19.1
|
965 |
+
|
966 |
+
## Citation
|
967 |
+
|
968 |
+
### BibTeX
|
969 |
+
|
970 |
+
#### Sentence Transformers
|
971 |
+
```bibtex
|
972 |
+
@inproceedings{reimers-2019-sentence-bert,
|
973 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
974 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
975 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
976 |
+
month = "11",
|
977 |
+
year = "2019",
|
978 |
+
publisher = "Association for Computational Linguistics",
|
979 |
+
url = "https://arxiv.org/abs/1908.10084",
|
980 |
+
}
|
981 |
+
```
|
982 |
+
|
983 |
+
#### MultipleNegativesRankingLoss
|
984 |
+
```bibtex
|
985 |
+
@misc{henderson2017efficient,
|
986 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
987 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
988 |
+
year={2017},
|
989 |
+
eprint={1705.00652},
|
990 |
+
archivePrefix={arXiv},
|
991 |
+
primaryClass={cs.CL}
|
992 |
+
}
|
993 |
+
```
|
994 |
+
|
995 |
+
<!--
|
996 |
+
## Glossary
|
997 |
+
|
998 |
+
*Clearly define terms in order to be accessible across audiences.*
|
999 |
+
-->
|
1000 |
+
|
1001 |
+
<!--
|
1002 |
+
## Model Card Authors
|
1003 |
+
|
1004 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1005 |
+
-->
|
1006 |
+
|
1007 |
+
<!--
|
1008 |
+
## Model Card Contact
|
1009 |
+
|
1010 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1011 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models/multi-qa-mpnet-base-cos-v1/MultipleNegativesRankingLoss/final",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0.dev0",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.5.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d237b195a73c93b3e5583e52ca70ed7347e7f6513cd8dae79d2093360d61b62
|
3 |
+
size 437967672
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 250,
|
59 |
+
"model_max_length": 512,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|