File size: 39,172 Bytes
32d8a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:160
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Priya Softweb emphasizes the importance of maintaining a clean
    and organized workspace. The company's HR policies clearly state that employees
    are responsible for keeping their assigned workspaces clean, orderly, and free
    from unnecessary items. Spitting tobacco, gum, or other substances in the washrooms
    is strictly prohibited. The company believes that a clean and organized work environment
    contributes to a more efficient and professional work experience for everyone.
    This emphasis on cleanliness reflects the company's commitment to creating a pleasant
    and hygienic workspace for its employees.
  sentences:
  - What is Priya Softweb's policy on the use of mobile phones during work hours?
  - What steps does Priya Softweb take to ensure that the workspace is clean and organized?
  - What are the repercussions for employees who violate the Non-Disclosure Agreement
    at Priya Softweb?
- source_sentence: Priya Softweb provides allocated basement parking facilities for
    employees to park their two-wheelers and four-wheelers. However, parking on the
    ground floor, around the lawn or main premises, is strictly prohibited as this
    space is reserved for Directors. Employees should use the parking under wings
    5 and 6, while other parking spaces are allocated to different wings. Parking
    two-wheelers in the car parking zone is not permitted, even if space is available.
    Two-wheelers should be parked in the designated basement space on the main stand,
    not on the side stand. Employees are encouraged to park in common spaces on a
    first-come, first-served basis. The company clarifies that it is not responsible
    for providing parking and that employees park their vehicles at their own risk.
    This comprehensive parking policy ensures organized parking arrangements and clarifies
    the company's liability regarding vehicle safety.
  sentences:
  - What is the application process for planned leaves at Priya Softweb?
  - What are the parking arrangements at Priya Softweb?
  - What is the process for reporting a security breach at Priya Softweb?
- source_sentence: The Diwali bonus at Priya Softweb is a discretionary benefit linked
    to the company's business performance. Distributed during the festive season of
    Diwali, it serves as a gesture of appreciation for employees' contributions throughout
    the year. However, it's important to note that employees currently under the notice
    period are not eligible for this bonus. This distinction highlights that the bonus
    is intended to reward ongoing commitment and contribution to the company's success.
  sentences:
  - What steps does Priya Softweb take to promote responsible use of company resources?
  - How does Priya Softweb demonstrate its commitment to Diversity, Equity, and Inclusion
    (DEI)?
  - What is the significance of the company's Diwali bonus at Priya Softweb?
- source_sentence: Priya Softweb's HR Manual paints a picture of a company that values
    its employees while upholding a strong sense of professionalism and ethical conduct.
    The company emphasizes a structured and transparent approach to its HR processes,
    ensuring clarity and fairness in areas like recruitment, performance appraisals,
    compensation, leave management, work-from-home arrangements, and incident reporting.
    The manual highlights the importance of compliance with company policies, promotes
    diversity and inclusion, and encourages a culture of continuous learning and development.
    Overall, the message conveyed is one of creating a supportive, respectful, and
    growth-oriented work environment for all employees.
  sentences:
  - What is the overall message conveyed by Priya Softweb's HR Manual?
  - What is the process for reporting employee misconduct at Priya Softweb?
  - What is Priya Softweb's policy on salary disbursement and payslips?
- source_sentence: No, work-from-home arrangements do not affect an employee's employment
    terms, compensation, and benefits at Priya Softweb. This clarifies that work-from-home
    is a flexible work arrangement and does not impact the employee's overall employment
    status or benefits.
  sentences:
  - Do work-from-home arrangements affect compensation and benefits at Priya Softweb?
  - What is the objective of the Work From Home Policy at Priya Softweb?
  - What is the procedure for a new employee joining Priya Softweb?
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6111111111111112
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7777777777777778
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7777777777777778
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8333333333333334
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6111111111111112
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25925925925925924
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15555555555555559
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08333333333333334
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6111111111111112
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7777777777777778
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7777777777777778
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8333333333333334
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7192441461309548
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6828703703703703
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6895641882483987
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.5555555555555556
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7777777777777778
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7777777777777778
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8333333333333334
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5555555555555556
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25925925925925924
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15555555555555559
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08333333333333334
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5555555555555556
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7777777777777778
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7777777777777778
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8333333333333334
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6972735740811556
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6537037037037037
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6594551282051282
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.4444444444444444
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6666666666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7777777777777778
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8888888888888888
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4444444444444444
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2222222222222222
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15555555555555559
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0888888888888889
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4444444444444444
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6666666666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7777777777777778
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8888888888888888
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6562432565194594
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5836419753086418
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5862843837990037
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.4444444444444444
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6666666666666666
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7222222222222222
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7777777777777778
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4444444444444444
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2222222222222222
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1444444444444445
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07777777777777779
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4444444444444444
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6666666666666666
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7222222222222222
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7777777777777778
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6173875222934583
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5653439153439153
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5728811234914597
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.3888888888888889
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6111111111111112
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6666666666666666
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7777777777777778
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3888888888888889
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2037037037037037
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13333333333333336
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07777777777777779
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3888888888888889
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6111111111111112
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6666666666666666
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7777777777777778
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5654500657830313
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.49922839506172845
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5078970140244651
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("kr-manish/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "No, work-from-home arrangements do not affect an employee's employment terms, compensation, and benefits at Priya Softweb. This clarifies that work-from-home is a flexible work arrangement and does not impact the employee's overall employment status or benefits.",
    'Do work-from-home arrangements affect compensation and benefits at Priya Softweb?',
    'What is the objective of the Work From Home Policy at Priya Softweb?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6111     |
| cosine_accuracy@3   | 0.7778     |
| cosine_accuracy@5   | 0.7778     |
| cosine_accuracy@10  | 0.8333     |
| cosine_precision@1  | 0.6111     |
| cosine_precision@3  | 0.2593     |
| cosine_precision@5  | 0.1556     |
| cosine_precision@10 | 0.0833     |
| cosine_recall@1     | 0.6111     |
| cosine_recall@3     | 0.7778     |
| cosine_recall@5     | 0.7778     |
| cosine_recall@10    | 0.8333     |
| cosine_ndcg@10      | 0.7192     |
| cosine_mrr@10       | 0.6829     |
| **cosine_map@100**  | **0.6896** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5556     |
| cosine_accuracy@3   | 0.7778     |
| cosine_accuracy@5   | 0.7778     |
| cosine_accuracy@10  | 0.8333     |
| cosine_precision@1  | 0.5556     |
| cosine_precision@3  | 0.2593     |
| cosine_precision@5  | 0.1556     |
| cosine_precision@10 | 0.0833     |
| cosine_recall@1     | 0.5556     |
| cosine_recall@3     | 0.7778     |
| cosine_recall@5     | 0.7778     |
| cosine_recall@10    | 0.8333     |
| cosine_ndcg@10      | 0.6973     |
| cosine_mrr@10       | 0.6537     |
| **cosine_map@100**  | **0.6595** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4444     |
| cosine_accuracy@3   | 0.6667     |
| cosine_accuracy@5   | 0.7778     |
| cosine_accuracy@10  | 0.8889     |
| cosine_precision@1  | 0.4444     |
| cosine_precision@3  | 0.2222     |
| cosine_precision@5  | 0.1556     |
| cosine_precision@10 | 0.0889     |
| cosine_recall@1     | 0.4444     |
| cosine_recall@3     | 0.6667     |
| cosine_recall@5     | 0.7778     |
| cosine_recall@10    | 0.8889     |
| cosine_ndcg@10      | 0.6562     |
| cosine_mrr@10       | 0.5836     |
| **cosine_map@100**  | **0.5863** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4444     |
| cosine_accuracy@3   | 0.6667     |
| cosine_accuracy@5   | 0.7222     |
| cosine_accuracy@10  | 0.7778     |
| cosine_precision@1  | 0.4444     |
| cosine_precision@3  | 0.2222     |
| cosine_precision@5  | 0.1444     |
| cosine_precision@10 | 0.0778     |
| cosine_recall@1     | 0.4444     |
| cosine_recall@3     | 0.6667     |
| cosine_recall@5     | 0.7222     |
| cosine_recall@10    | 0.7778     |
| cosine_ndcg@10      | 0.6174     |
| cosine_mrr@10       | 0.5653     |
| **cosine_map@100**  | **0.5729** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3889     |
| cosine_accuracy@3   | 0.6111     |
| cosine_accuracy@5   | 0.6667     |
| cosine_accuracy@10  | 0.7778     |
| cosine_precision@1  | 0.3889     |
| cosine_precision@3  | 0.2037     |
| cosine_precision@5  | 0.1333     |
| cosine_precision@10 | 0.0778     |
| cosine_recall@1     | 0.3889     |
| cosine_recall@3     | 0.6111     |
| cosine_recall@5     | 0.6667     |
| cosine_recall@10    | 0.7778     |
| cosine_ndcg@10      | 0.5655     |
| cosine_mrr@10       | 0.4992     |
| **cosine_map@100**  | **0.5079** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 160 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                             |
  |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                             |
  | details | <ul><li>min: 18 tokens</li><li>mean: 93.95 tokens</li><li>max: 381 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 20.32 tokens</li><li>max: 34 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | anchor                                                                                                             |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|
  | <code>Priya Softweb's HR Manual provides valuable insights into the company's culture and values. Key takeaways include: * **Structure and Transparency:** The company emphasizes a structured and transparent approach to its HR processes. This is evident in its clear policies for recruitment, performance appraisals, compensation, leave management, work-from-home arrangements, and incident reporting. * **Professionalism and Ethics:** Priya Softweb places a high value on professionalism and ethical conduct. Its dress code, guidelines for mobile phone usage, and strict policies against tobacco use within the office all point toward a commitment to maintaining a professional and respectful work environment. * **Employee Well-being:** The company demonstrates a genuine concern for the well-being of its employees. This is reflected in its comprehensive leave policies, flexible work-from-home arrangements, and efforts to promote a healthy and clean workspace. * **Diversity and Inclusion:** Priya Softweb is committed to fostering a diverse and inclusive workplace, where employees from all backgrounds feel valued and respected. Its DEI policy outlines the company's commitment to equal opportunities, diverse hiring practices, and inclusive benefits and policies. * **Continuous Learning and Development:** The company encourages a culture of continuous learning and development, providing opportunities for employees to expand their skillsets and stay current with industry advancements. This is evident in its policies for Ethics & Compliance training and its encouragement of utilizing idle time for self-learning and exploring new technologies. Overall, Priya Softweb's HR Manual reveals a company culture that prioritizes structure, transparency, professionalism, employee well-being, diversity, and a commitment to continuous improvement. The company strives to create a supportive and growth-oriented work environment where employees feel valued and empowered to succeed.</code> | <code>What are the key takeaways from Priya Softweb's HR Manual regarding the company's culture and values?</code> |
  | <code>Priya Softweb provides allocated basement parking facilities for employees to park their two-wheelers and four-wheelers. However, parking on the ground floor, around the lawn or main premises, is strictly prohibited as this space is reserved for Directors. Employees should use the parking under wings 5 and 6, while other parking spaces are allocated to different wings. Parking two-wheelers in the car parking zone is not permitted, even if space is available. Two-wheelers should be parked in the designated basement space on the main stand, not on the side stand. Employees are encouraged to park in common spaces on a first-come, first-served basis. The company clarifies that it is not responsible for providing parking and that employees park their vehicles at their own risk. This comprehensive parking policy ensures organized parking arrangements and clarifies the company's liability regarding vehicle safety.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <code>What are the parking arrangements at Priya Softweb?</code>                                                   |
  | <code>Investments and declarations must be submitted on or before the 25th of each month through OMS at Priya Softweb.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <code>What is the deadline for submitting investments and declarations at Priya Softweb?</code>                    |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step  | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| **1.0** | **1** | **0.5729**             | **0.5863**             | **0.6595**             | **0.5079**            | **0.6896**             |
| 2.0     | 2     | 0.5729                 | 0.5863                 | 0.6595                 | 0.5079                | 0.6896                 |
| 3.0     | 3     | 0.5729                 | 0.5863                 | 0.6595                 | 0.5079                | 0.6896                 |
| 3.2     | 4     | 0.5729                 | 0.5863                 | 0.6595                 | 0.5079                | 0.6896                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->