--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: Outcome Of Board Meeting Of Mahindra & Mahindra Limited Held On 4Th August, 2023 - text: Board Meeting Intimation for Considering And Taking On Record The Audited Standalone And Unaudited Consolidated Financial Results Of The Company For The Quarter And Nine Months Ended December 31, 2022. - text: 'Board Meeting Intimation for Intimation Regarding Holding Of Meeting Of The Board Of Directors: - Un-Audited Financial Results For The Quarter Ended June 30, 2023' - text: Report Of Auditors On Financial Statements For The Quarter Ended September 30 2031 With UDIN - text: Infosys Unveils New AI-Powered Solutions for Enhanced Customer Experience pipeline_tag: text-classification inference: true base_model: sentence-transformers/all-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/all-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9557522123893806 name: Accuracy --- # SetFit with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 9 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels ## Lables 0-press release/advertisement/newspaper publication
1-business updates/strategic announcemet/clarification sought
2-Investor meetings/board meeting
3-earnings call transcript
4-esop/esps
5-violation/litigation/penalty
6-auditors report/result
7-research
8-resignation
| Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9558 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("krish2505/setfitmkrt2") # Run inference preds = model("Infosys Unveils New AI-Powered Solutions for Enhanced Customer Experience") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 14.7272 | 50 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 142 | | 1 | 134 | | 2 | 298 | | 3 | 66 | | 4 | 43 | | 5 | 53 | | 6 | 202 | | 7 | 34 | | 8 | 36 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0016 | 1 | 0.1754 | - | | 0.0794 | 50 | 0.0917 | - | | 0.1587 | 100 | 0.0534 | - | | 0.2381 | 150 | 0.0521 | - | | 0.3175 | 200 | 0.0352 | - | | 0.3968 | 250 | 0.0062 | - | | 0.4762 | 300 | 0.0159 | - | | 0.5556 | 350 | 0.0151 | - | | 0.6349 | 400 | 0.0207 | - | | 0.7143 | 450 | 0.0129 | - | | 0.7937 | 500 | 0.0186 | - | | 0.8730 | 550 | 0.0083 | - | | 0.9524 | 600 | 0.002 | - | | 1.0317 | 650 | 0.0081 | - | | 1.1111 | 700 | 0.0263 | - | | 1.1905 | 750 | 0.0118 | - | | 1.2698 | 800 | 0.0196 | - | | 1.3492 | 850 | 0.011 | - | | 1.4286 | 900 | 0.0153 | - | | 1.5079 | 950 | 0.0015 | - | | 1.5873 | 1000 | 0.0156 | - | | 1.6667 | 1050 | 0.0215 | - | | 1.7460 | 1100 | 0.0022 | - | | 1.8254 | 1150 | 0.003 | - | | 1.9048 | 1200 | 0.0033 | - | | 1.9841 | 1250 | 0.0155 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.2.2 - Transformers: 4.36.2 - PyTorch: 2.0.0 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```