File size: 18,322 Bytes
2bbd84f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
---

tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10501
- loss:CosineSimilarityLoss
base_model: klue/roberta-base
widget:
- source_sentence: 이어 내년 4월부터 전자증명서는 건강보험자격확인서와 건강보험료 납부확인서  13종으로 늘어나고 사용처도 중앙부처는
    물론 은행과 보험사 등으로도 확대된다.
  sentences:
  - 4 보험료 납부유예  감면조치는 4월에 납부해야 하는 3 보험료부터 적용된다.
  -  외에는 모든 것에 만족했습니다.
  - 영하의 추운 날씨에는 장갑 잊지 말고  끼렴.
- source_sentence: 야생동물 질병관리를 전담할 국가기관인 국립야생동물질병관리원이 올해 광주광역시 광산구 삼거동 일원에 개원 예정이다.
  sentences:
  - 위치는 좋으나 생활하기  불편합니다.
  - 역에서 매우 가깝고, 쇼핑몰과 쇼핑몰 사이에는 숙소가 있습니다.
  - 추후 인도네시아와도 화상회의  온라인 세미나를 개최할 예정이다.
- source_sentence: 작은 먹거리는 숙소 들어오게 전에 사는걸 추천해요.
  sentences:
  - 제일 최근에 스팸이 도착한 시간을 알려줘
  - 저는 당신이 숙소에 들어오기 전에 작은 음식을 사는 것을 추천합니다.
  - 올해는 황사 며칠동안 왔어?
- source_sentence: 언제 만나는 것이  좋으실까요, 저녁 일곱시? 여덟시?
  sentences:
  - 이번주 일요일 약속 언제인지 궁금해.
  - 전자레인지와 가스레인지 중에 요리하고 싶은 걸로 알려줘
  - 뜨거운물말고 찬물로 세탁하고 더운물로 헹궈야될  같지 않아?
- source_sentence: 지금까지 이탈리아 여행중에 가장 좋은 숙소였습니다
  sentences:
  - 지금까지 가본 호텔보다  좋은 숙소였습니다.
  - ‘코로나 아세안 대응기금’, ‘필수의료물품 비축제도’는 아세안+3가 함께 만들어낸 의미 있는 결과입니다.
  - 하루에 삼십분보단  시간 이상은 라디오 들어
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
co2_eq_emissions:
  emissions: 13.607209111220918
  energy_consumed: 0.0310949426904377
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 12th Gen Intel(R) Core(TM) i5-12400
  ram_total_size: 31.784194946289062
  hours_used: 0.154
  hardware_used: 1 x NVIDIA GeForce RTX 3060
model-index:
- name: SentenceTransformer based on klue/roberta-base
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: pearson_cosine
      value: 0.34770715374416716
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.35560473197486514
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.3673847148331908
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.36460670798564826
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.36074518113660536
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.35482778401649034
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.21251176317804726
      name: Pearson Dot
    - type: spearman_dot
      value: 0.20063256899469895
      name: Spearman Dot
    - type: pearson_max
      value: 0.3673847148331908
      name: Pearson Max
    - type: spearman_max
      value: 0.36460670798564826
      name: Spearman Max
    - type: pearson_cosine
      value: 0.9591996448990093
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9206205258325634
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.9531423622288514
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.920406431818358
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9532828644532834
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.9201721809761834
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.9482313505749467
      name: Pearson Dot
    - type: spearman_dot
      value: 0.9016036223997308
      name: Spearman Dot
    - type: pearson_max
      value: 0.9591996448990093
      name: Pearson Max
    - type: spearman_max
      value: 0.9206205258325634
      name: Spearman Max
---


# SentenceTransformer based on klue/roberta-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("sentence_transformers_model_id")

# Run inference

sentences = [

    '지금까지 이탈리아 여행중에 가장 좋은 숙소였습니다',

    '지금까지 가본 호텔보다 더 좋은 숙소였습니다.',

    '‘코로나 아세안 대응기금’, ‘필수의료물품 비축제도’는 아세안+3가 함께 만들어낸 의미 있는 결과입니다.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.3477     |

| spearman_cosine    | 0.3556     |
| pearson_manhattan  | 0.3674     |

| spearman_manhattan | 0.3646     |
| pearson_euclidean  | 0.3607     |

| spearman_euclidean | 0.3548     |
| pearson_dot        | 0.2125     |

| spearman_dot       | 0.2006     |
| pearson_max        | 0.3674     |

| **spearman_max**   | **0.3646** |



#### Semantic Similarity



* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric             | Value      |

|:-------------------|:-----------|

| pearson_cosine     | 0.9592     |
| spearman_cosine    | 0.9206     |

| pearson_manhattan  | 0.9531     |
| spearman_manhattan | 0.9204     |

| pearson_euclidean  | 0.9533     |
| spearman_euclidean | 0.9202     |

| pearson_dot        | 0.9482     |
| spearman_dot       | 0.9016     |

| pearson_max        | 0.9592     |
| **spearman_max**   | **0.9206** |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### Unnamed Dataset





* Size: 10,501 training samples

* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | sentence_0                                                                        | sentence_1                                                                        | label                                                          |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|

  | type    | string                                                                            | string                                                                            | float                                                          |

  | details | <ul><li>min: 7 tokens</li><li>mean: 20.14 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 19.71 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |

* Samples:

  | sentence_0                                                                  | sentence_1                                                                              | label             |

  |:----------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|:------------------|

  | <code>가스레인지 사용하지 않도록 유의해주세요</code>                                          | <code>가스레인지 사용은 삼가주세요</code>                                                            | <code>0.74</code> |

  | <code>이번주하고 다음주 중에 언제 동기 모임이 있어?</code>                                     | <code>언제 자연어처리 학회 논문 접수가 마감되나요?</code>                                                  | <code>0.02</code> |

  | <code>또한 각 부처는 생활방역 관련 업무를 종합·체계적으로 수행하기 위해 기관별로 생활방역 전담팀(TF)을 구성한다.</code> | <code>또한 생활방지와 관련된 업무를 종합적이고 체계적으로 수행하기 위하여 각 부서별로 생활방역 전담 태스크포스(TF)를 구성하여야 합니다.</code> | <code>0.72</code> |

* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:

  ```json

  {

      "loss_fct": "torch.nn.modules.loss.MSELoss"

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 16

- `per_device_eval_batch_size`: 16

- `num_train_epochs`: 4

- `multi_dataset_batch_sampler`: round_robin



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 16

- `per_device_eval_batch_size`: 16

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `torch_empty_cache_steps`: None

- `learning_rate`: 5e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1

- `num_train_epochs`: 4

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.0

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: False

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `eval_on_start`: False

- `use_liger_kernel`: False

- `eval_use_gather_object`: False

- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: round_robin



</details>



### Training Logs

| Epoch  | Step | Training Loss | spearman_max |

|:------:|:----:|:-------------:|:------------:|

| 0      | 0    | -             | 0.3646       |

| 0.7610 | 500  | 0.0278        | -            |

| 1.0    | 657  | -             | 0.9187       |

| 1.5221 | 1000 | 0.0085        | 0.9117       |

| 2.0    | 1314 | -             | 0.9201       |

| 2.2831 | 1500 | 0.0044        | -            |

| 3.0    | 1971 | -             | 0.9186       |

| 3.0441 | 2000 | 0.0034        | 0.9199       |

| 3.8052 | 2500 | 0.0027        | -            |

| 4.0    | 2628 | -             | 0.9206       |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.031 kWh

- **Carbon Emitted**: 0.014 kg of CO2

- **Hours Used**: 0.154 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3060

- **CPU Model**: 12th Gen Intel(R) Core(TM) i5-12400

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.12.4

- Sentence Transformers: 3.2.1

- Transformers: 4.45.2

- PyTorch: 2.4.0+cu121

- Accelerate: 0.29.3

- Datasets: 2.19.0

- Tokenizers: 0.20.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->