nobu-g commited on
Commit
ff444a8
1 Parent(s): d748815

first commit

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ja
3
+ license: cc-by-sa-4.0
4
+ library_name: transformers
5
+ tags:
6
+ - deberta
7
+ - deberta-v2
8
+ - fill-mask
9
+ datasets:
10
+ - wikipedia
11
+ - cc100
12
+ - oscar
13
+ metrics:
14
+ - accuracy
15
+ mask_token: "[MASK]"
16
+ widget:
17
+ - text: "京都大学で自然言語処理を[MASK]する。"
18
+ ---
19
+
20
+ # Model Card for Japanese DeBERTa V2 base
21
+
22
+ ## Model description
23
+
24
+ This is a Japanese DeBERTa V2 base model pre-trained on Japanese Wikipedia, the Japanese portion of CC-100, and the Japanese portion of OSCAR.
25
+
26
+ ## How to use
27
+
28
+ You can use this model for masked language modeling as follows:
29
+
30
+ ```python
31
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
32
+ tokenizer = AutoTokenizer.from_pretrained('ku-nlp/deberta-v2-base-japanese', trust_remote_code=True)
33
+ model = AutoModelForMaskedLM.from_pretrained('ku-nlp/deberta-v2-base-japanese')
34
+
35
+ sentence = '京都大学で自然言語処理を[MASK]する。'
36
+ encoding = tokenizer(sentence, return_tensors='pt')
37
+ ...
38
+ ```
39
+
40
+ You can also fine-tune this model on downstream tasks.
41
+
42
+ ## Tokenization
43
+
44
+ ~~The input text should be segmented into words by [Juman++](https://github.com/ku-nlp/jumanpp) in advance. [Juman++ 2.0.0-rc3](https://github.com/ku-nlp/jumanpp/releases/tag/v2.0.0-rc3) was used for pre-training. Each word is tokenized into subwords by [sentencepiece](https://github.com/google/sentencepiece).~~
45
+
46
+ UPDATE: The input text is internally segmented by [Juman++](https://github.com/ku-nlp/jumanpp) within `DebertaV2JumanppTokenizer(Fast)`, so there's no need to segment it in advance. To use `DebertaV2JumanppTokenizer(Fast)`, you need to install [Juman++ 2.0.0-rc3](https://github.com/ku-nlp/jumanpp/releases/tag/v2.0.0-rc3) and [rhoknp](https://github.com/ku-nlp/rhoknp).
47
+
48
+ ## Training data
49
+
50
+ We used the following corpora for pre-training:
51
+
52
+ - Japanese Wikipedia (as of 20221020, 3.2GB, 27M sentences, 1.3M documents)
53
+ - Japanese portion of CC-100 (85GB, 619M sentences, 66M documents)
54
+ - Japanese portion of OSCAR (54GB, 326M sentences, 25M documents)
55
+
56
+ Note that we filtered out documents annotated with "header", "footer", or "noisy" tags in OSCAR.
57
+ Also note that Japanese Wikipedia was duplicated 10 times to make the total size of the corpus comparable to that of CC-100 and OSCAR. As a result, the total size of the training data is 171GB.
58
+
59
+ ## Training procedure
60
+
61
+ We first segmented texts in the corpora into words using [Juman++](https://github.com/ku-nlp/jumanpp).
62
+ Then, we built a sentencepiece model with 32000 tokens including words ([JumanDIC](https://github.com/ku-nlp/JumanDIC)) and subwords induced by the unigram language model of [sentencepiece](https://github.com/google/sentencepiece).
63
+
64
+ We tokenized the segmented corpora into subwords using the sentencepiece model and trained the Japanese DeBERTa model using [transformers](https://github.com/huggingface/transformers) library.
65
+ The training took three weeks using 8 NVIDIA A100-SXM4-40GB GPUs.
66
+
67
+ The following hyperparameters were used during pre-training:
68
+
69
+ - learning_rate: 2e-4
70
+ - per_device_train_batch_size: 44
71
+ - distributed_type: multi-GPU
72
+ - num_devices: 8
73
+ - gradient_accumulation_steps: 6
74
+ - total_train_batch_size: 2,112
75
+ - max_seq_length: 512
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
77
+ - lr_scheduler_type: linear schedule with warmup
78
+ - training_steps: 500,000
79
+ - warmup_steps: 10,000
80
+
81
+ The accuracy of the trained model on the masked language modeling task was 0.779.
82
+ The evaluation set consists of 5,000 randomly sampled documents from each of the training corpora.
83
+
84
+ ## Fine-tuning on NLU tasks
85
+
86
+ We fine-tuned the following models and evaluated them on the dev set of JGLUE.
87
+ We tuned learning rate and training epochs for each model and task following [the JGLUE paper](https://www.jstage.jst.go.jp/article/jnlp/30/1/30_63/_pdf/-char/ja).
88
+
89
+ | Model | MARC-ja/acc | JSTS/pearson | JSTS/spearman | JNLI/acc | JSQuAD/EM | JSQuAD/F1 | JComQA/acc |
90
+ |-------------------------------|-------------|--------------|---------------|----------|-----------|-----------|------------|
91
+ | Waseda RoBERTa base | 0.965 | 0.913 | 0.876 | 0.905 | 0.853 | 0.916 | 0.853 |
92
+ | Waseda RoBERTa large (seq512) | 0.969 | 0.925 | 0.890 | 0.928 | 0.910 | 0.955 | 0.900 |
93
+ | LUKE Japanese base* | 0.965 | 0.916 | 0.877 | 0.912 | - | - | 0.842 |
94
+ | LUKE Japanese large* | 0.965 | 0.932 | 0.902 | 0.927 | - | - | 0.893 |
95
+ | DeBERTaV2 base | 0.970 | 0.922 | 0.886 | 0.922 | 0.899 | 0.951 | 0.873 |
96
+ | DeBERTaV2 large | 0.968 | 0.925 | 0.892 | 0.924 | 0.912 | 0.959 | 0.890 |
97
+
98
+ *The scores of LUKE are from [the official repository](https://github.com/studio-ousia/luke).
99
+
100
+ ## Acknowledgments
101
+
102
+ This work was supported by Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN) through General Collaboration Project no. jh221004, "Developing a Platform for Constructing and Sharing of Large-Scale Japanese Language Models".
103
+ For training models, we used the mdx: a platform for the data-driven future.
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DebertaV2ForMaskedLM"
4
+ ],
5
+ "attention_head_size": 64,
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "conv_act": "gelu",
8
+ "conv_kernel_size": 3,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-07,
15
+ "max_position_embeddings": 512,
16
+ "max_relative_positions": -1,
17
+ "model_type": "deberta-v2",
18
+ "norm_rel_ebd": "layer_norm",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 0,
22
+ "pooler_dropout": 0,
23
+ "pooler_hidden_act": "gelu",
24
+ "pooler_hidden_size": 768,
25
+ "pos_att_type": [
26
+ "p2c",
27
+ "c2p"
28
+ ],
29
+ "position_biased_input": false,
30
+ "position_buckets": 256,
31
+ "relative_attention": true,
32
+ "share_att_key": true,
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.23.1",
35
+ "type_vocab_size": 0,
36
+ "vocab_size": 32000
37
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57fb86bf188376f5d1230e5835270f9e7bb00e5db5aaedfb9445df7b571ba9c3
3
+ size 548197213
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c111c16e2e52366dcac46b886e40650bb843fe2938a65f5970271fc5697a127
3
+ size 805061
tokenization_deberta_v2_jumanpp.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import DebertaV2Tokenizer
2
+
3
+
4
+ class DebertaV2JumanppTokenizer(DebertaV2Tokenizer):
5
+ def __init__(self, *args, **kwargs):
6
+ super().__init__(*args, **kwargs)
7
+ self.juman_tokenizer = JumanppTokenizer()
8
+
9
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs) -> tuple[str, dict]:
10
+ text = self.juman_tokenizer.tokenize(text)
11
+
12
+ add_prefix_space = kwargs.pop("add_prefix_space", False)
13
+ if is_split_into_words or add_prefix_space:
14
+ text = " " + text
15
+ return (text, kwargs)
16
+
17
+
18
+ class JumanppTokenizer:
19
+ def __init__(self):
20
+ try:
21
+ import rhoknp
22
+ except ImportError:
23
+ raise ImportError(
24
+ "You need to install rhoknp to use JumanppPreTokenizer. "
25
+ "See https://github.com/ku-nlp/rhoknp for installation."
26
+ )
27
+ self.juman = rhoknp.Jumanpp()
28
+
29
+ def tokenize(self, text: str) -> str:
30
+ return " ".join([morpheme.surf for morpheme in self.juman.apply_to_sentence(text).morphemes])
tokenization_deberta_v2_jumanpp_fast.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+ from tokenizers import NormalizedString, PreTokenizedString, normalizers, pre_tokenizers
4
+ from transformers import DebertaV2TokenizerFast
5
+
6
+
7
+ class DebertaV2JumanppTokenizerFast(DebertaV2TokenizerFast):
8
+ def __init__(self, *args, **kwargs):
9
+ super().__init__(*args, **kwargs)
10
+ self.juman_normalizer = normalizers.Sequence(
11
+ [
12
+ # cf. https://github.com/ku-nlp/rhoknp/blob/v1.3.0/src/rhoknp/units/sentence.py#L36
13
+ normalizers.Replace("\r", ""),
14
+ normalizers.Replace("\n", ""),
15
+ # cf. https://github.com/ku-nlp/jumanpp/blob/v2.0.0-rc3/src/jumandic/shared/juman_format.cc#L44-L61
16
+ normalizers.Replace("\t", "\\t"),
17
+ normalizers.Replace(" ", " "),
18
+ normalizers.Replace('"', "”"),
19
+ normalizers.Replace("<", "<"),
20
+ normalizers.Replace(">", ">"),
21
+ ]
22
+ )
23
+ self.juman_pre_tokenizer = pre_tokenizers.PreTokenizer.custom(JumanppPreTokenizer())
24
+
25
+ self.default_normalizer = copy.deepcopy(self.backend_tokenizer.normalizer)
26
+ self.default_pre_tokenizer = copy.deepcopy(self.backend_tokenizer.pre_tokenizer)
27
+
28
+ self.backend_tokenizer.normalizer = normalizers.Sequence(
29
+ [self.juman_normalizer, self.backend_tokenizer.normalizer]
30
+ )
31
+ self.backend_tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
32
+ [self.juman_pre_tokenizer, self.backend_tokenizer.pre_tokenizer]
33
+ )
34
+
35
+ def save_pretrained(self, *args, **kwargs):
36
+ self.backend_tokenizer.normalizer = self.default_normalizer
37
+ self.backend_tokenizer.pre_tokenizer = self.default_pre_tokenizer
38
+ super().save_pretrained(*args, **kwargs)
39
+
40
+ self.backend_tokenizer.normalizer = normalizers.Sequence(
41
+ [self.juman_normalizer, self.backend_tokenizer.normalizer]
42
+ )
43
+ self.backend_tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
44
+ [self.juman_pre_tokenizer, self.backend_tokenizer.pre_tokenizer]
45
+ )
46
+
47
+
48
+ class JumanppPreTokenizer:
49
+ def __init__(self):
50
+ try:
51
+ import rhoknp
52
+ except ImportError:
53
+ raise ImportError(
54
+ "You need to install rhoknp to use JumanppPreTokenizer. "
55
+ "See https://github.com/ku-nlp/rhoknp for installation."
56
+ )
57
+ self.juman = rhoknp.Jumanpp()
58
+
59
+ def pre_tokenize(self, pretok: PreTokenizedString):
60
+ pretok.split(self.jumanpp_split)
61
+
62
+ def jumanpp_split(self, i: int, normalized_string: NormalizedString) -> list[NormalizedString]:
63
+ offsets = [morpheme.span for morpheme in self.juman.apply_to_sentence(str(normalized_string)).morphemes]
64
+ return [normalized_string[offset[0]:offset[1]] for offset in offsets]
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": false,
5
+ "eos_token": "[SEP]",
6
+ "keep_accents": true,
7
+ "mask_token": "[MASK]",
8
+ "pad_token": "[PAD]",
9
+ "sep_token": "[SEP]",
10
+ "sp_model_kwargs": {},
11
+ "special_tokens_map_file": null,
12
+ "split_by_punct": false,
13
+ "tokenizer_class": "DebertaV2JumanppTokenizer",
14
+ "unk_token": "[UNK]",
15
+ "auto_map": {
16
+ "AutoTokenizer": [
17
+ "tokenization_deberta_v2_jumanpp.DebertaV2JumanppTokenizer",
18
+ "tokenization_deberta_v2_jumanpp_fast.DebertaV2JumanppTokenizerFast"
19
+ ]
20
+ }
21
+ }