Update README.md
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ tags:
|
|
9 |
|
10 |
# kuelumbus/polyBERT
|
11 |
|
12 |
-
This is
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
@@ -25,10 +25,10 @@ Then you can use the model like this:
|
|
25 |
|
26 |
```python
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
-
|
29 |
|
30 |
model = SentenceTransformer('kuelumbus/polyBERT')
|
31 |
-
embeddings = model.encode(
|
32 |
print(embeddings)
|
33 |
```
|
34 |
|
@@ -50,35 +50,31 @@ def mean_pooling(model_output, attention_mask):
|
|
50 |
|
51 |
|
52 |
# Sentences we want sentence embeddings for
|
53 |
-
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
tokenizer = AutoTokenizer.from_pretrained('kuelumbus/polyBERT')
|
57 |
model = AutoModel.from_pretrained('kuelumbus/polyBERT')
|
58 |
|
59 |
# Tokenize sentences
|
60 |
-
encoded_input = tokenizer(
|
61 |
|
62 |
# Compute token embeddings
|
63 |
with torch.no_grad():
|
64 |
model_output = model(**encoded_input)
|
65 |
|
66 |
# Perform pooling. In this case, mean pooling.
|
67 |
-
|
68 |
|
69 |
-
print("
|
70 |
-
print(
|
71 |
```
|
72 |
|
73 |
|
74 |
|
75 |
## Evaluation Results
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=kuelumbus/polyBERT)
|
80 |
-
|
81 |
-
|
82 |
|
83 |
## Full Model Architecture
|
84 |
```
|
@@ -90,4 +86,4 @@ SentenceTransformer(
|
|
90 |
|
91 |
## Citing & Authors
|
92 |
|
93 |
-
|
|
|
9 |
|
10 |
# kuelumbus/polyBERT
|
11 |
|
12 |
+
This is polyBERT: A chemical language model to enable fully machine-driven ultrafast polymer informatics. polyBERT maps PSMILES strings to 600 dimensional dense fingerprints. The fingerprints numerically represent polymer chemical structures.
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
|
|
25 |
|
26 |
```python
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
+
psmiles_strings = ["[*]CC[*]", "[*]COC[*]"]
|
29 |
|
30 |
model = SentenceTransformer('kuelumbus/polyBERT')
|
31 |
+
embeddings = model.encode(psmiles_strings)
|
32 |
print(embeddings)
|
33 |
```
|
34 |
|
|
|
50 |
|
51 |
|
52 |
# Sentences we want sentence embeddings for
|
53 |
+
psmiles_strings = ["[*]CC[*]", "[*]COC[*]"]
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
tokenizer = AutoTokenizer.from_pretrained('kuelumbus/polyBERT')
|
57 |
model = AutoModel.from_pretrained('kuelumbus/polyBERT')
|
58 |
|
59 |
# Tokenize sentences
|
60 |
+
encoded_input = tokenizer(psmiles_strings, padding=True, truncation=True, return_tensors='pt')
|
61 |
|
62 |
# Compute token embeddings
|
63 |
with torch.no_grad():
|
64 |
model_output = model(**encoded_input)
|
65 |
|
66 |
# Perform pooling. In this case, mean pooling.
|
67 |
+
fingerprints = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
|
69 |
+
print("Fingerprints:")
|
70 |
+
print(fingerprints)
|
71 |
```
|
72 |
|
73 |
|
74 |
|
75 |
## Evaluation Results
|
76 |
|
77 |
+
See https://github.com/Ramprasad-Group/polyBERT
|
|
|
|
|
|
|
|
|
78 |
|
79 |
## Full Model Architecture
|
80 |
```
|
|
|
86 |
|
87 |
## Citing & Authors
|
88 |
|
89 |
+
t.b.d.
|