--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers widget: - source_sentence: '[*]CC[*]' sentences: - '[*]COC[*]' - '[*]CC(C)C[*]' license: creativeml-openrail-m datasets: - Open-Orca/OpenOrca metrics: - accuracy --- # kuelumbus/polyBERT This is polyBERT: A chemical language model to enable fully machine-driven ultrafast polymer informatics. polyBERT maps PSMILES strings to 600 dimensional dense fingerprints. The fingerprints numerically represent polymer chemical structures. Please see the license agreement in the LICENSE file. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer psmiles_strings = ["[*]CC[*]", "[*]COC[*]"] polyBERT = SentenceTransformer('kuelumbus/polyBERT') embeddings = polyBERT.encode(psmiles_strings) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for psmiles_strings = ["[*]CC[*]", "[*]COC[*]"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('kuelumbus/polyBERT') polyBERT = AutoModel.from_pretrained('kuelumbus/polyBERT') # Tokenize sentences encoded_input = tokenizer(psmiles_strings, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = polyBERT(**encoded_input) # Perform pooling. In this case, mean pooling. fingerprints = mean_pooling(model_output, encoded_input['attention_mask']) print("Fingerprints:") print(fingerprints) ``` ## Evaluation Results See https://github.com/Ramprasad-Group/polyBERT and paper on arXiv. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model (1): Pooling({'word_embedding_dimension': 600, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Kuenneth, C., Ramprasad, R. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics. Nat Commun 14, 4099 (2023). https://doi.org/10.1038/s41467-023-39868-6