Jakob Poncelet commited on
Commit
60aae99
1 Parent(s): c44c40d

First Model Version

Browse files
scripts/cgn-dev.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import kaldiio
3
+
4
+ import datasets
5
+ from transformers.utils import logging
6
+
7
+
8
+ logger = logging.get_logger(__name__)
9
+
10
+ _DESCRIPTION = "Corpus Gesproken Nederlands"
11
+
12
+ _FILEPATHS = {
13
+ "fbank_pitch": "/esat/spchtemp/scratch/jponcele/espnet2/dump/fbank_pitch/dev_s",
14
+ "raw": "/esat/spchtemp/scratch/jponcele/espnet2/dump/raw/dev_s"
15
+ }
16
+
17
+ _FEATURES_NAME = {
18
+ "fbank_pitch": "feats.scp",
19
+ "raw": "wav.scp"
20
+ }
21
+
22
+
23
+ class CGNConfig(datasets.BuilderConfig):
24
+ def __init__(self, **kwargs):
25
+ """
26
+ Args:
27
+ data_dir: `string`, the path to the folder containing the files in the
28
+ downloaded .tar
29
+ citation: `string`, citation for the data set
30
+ url: `string`, url for information about the data set
31
+ **kwargs: keyword arguments forwarded to super.
32
+ """
33
+ super(CGNConfig, self).__init__(version=datasets.Version("2.6.1", ""), **kwargs)
34
+
35
+
36
+ class CGN(datasets.GeneratorBasedBuilder):
37
+
38
+ DEFAULT_WRITER_BATCH_SIZE = 256
39
+ DEFAULT_CONFIG_NAME = "raw"
40
+ BUILDER_CONFIGS = [
41
+ CGNConfig(name="raw", description="All Components")
42
+ ]
43
+
44
+ def _info(self):
45
+ return datasets.DatasetInfo(
46
+ description=_DESCRIPTION,
47
+ features=datasets.Features(
48
+ {
49
+ "audio": datasets.Value("string"),
50
+ "text": datasets.Value("string"),
51
+ "id": datasets.Value("string"),
52
+ }
53
+ ),
54
+ supervised_keys=("text",),
55
+ )
56
+
57
+ def _split_generators(self, _):
58
+
59
+ return [
60
+ datasets.SplitGenerator(
61
+ name="test",
62
+ gen_kwargs={}
63
+ )
64
+ ]
65
+
66
+ def _generate_examples(self):
67
+
68
+ data_dirs = [_FILEPATHS[self.config.name]]
69
+ for data_dir in data_dirs:
70
+ with open(f"{data_dir}/text", "r") as txtfile:
71
+ lines = txtfile.readlines()
72
+ texts = {line.rstrip().split(' ')[0]: ' '.join(line.rstrip().split(' ')[1:]) for line in lines if len(line.rstrip().split(' ')) > 1}
73
+
74
+ featfile = f"{data_dir}/{_FEATURES_NAME[self.config.name]}"
75
+
76
+ with open(featfile, "r") as txtfile:
77
+ feats_generator = dict(map(lambda s: s.strip().split(maxsplit=1), txtfile))
78
+
79
+ #if featfile.endswith(".scp"):
80
+ # feats_generator = kaldiio.load_scp(featfile)
81
+ #elif featfile.endswith(".npz"):
82
+ # feats_generator = np.load(featfile)
83
+
84
+ for key, (uttid, transcript) in enumerate(texts.items()):
85
+ if uttid not in feats_generator:
86
+ logger.warning(f"Missing utterance: {uttid}")
87
+ continue
88
+
89
+ wav = feats_generator[uttid]
90
+ #if isinstance(feats, tuple):
91
+ # sr, feats = feats
92
+ #feats = np.expand_dims(feats, axis=1)
93
+
94
+ yield key, {"audio": wav, "text": transcript, "id": uttid}
scripts/run-cgn-small.sh ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+ export PYTHONPATH=""
3
+ source /esat/spchtemp/scratch/jponcele/anaconda3/bin/activate whisper
4
+ python --version
5
+
6
+ #--dataset_config_name="nl" \
7
+ #--language="dutch" \
8
+
9
+ python run_speech_recognition_seq2seq_streaming.py \
10
+ --model_name_or_path="openai/whisper-small" \
11
+ --dataset_name="kul-speech-lab/CGN" \
12
+ --train_split_name="train+validation" \
13
+ --eval_split_name="test" \
14
+ --language="dutch" \
15
+ --task="transcribe" \
16
+ --model_index_name="Whisper Small CGN" \
17
+ --max_steps="15000" \
18
+ --output_dir="/esat/audioslave/jponcele/whisper/finetuning_event/CGN/small" \
19
+ --per_device_train_batch_size="16" \
20
+ --per_device_eval_batch_size="8" \
21
+ --gradient_accumulation_steps="4" \
22
+ --logging_steps="100" \
23
+ --learning_rate="1e-5" \
24
+ --warmup_steps="500" \
25
+ --evaluation_strategy="steps" \
26
+ --eval_steps="1000" \
27
+ --save_strategy="steps" \
28
+ --save_steps="1000" \
29
+ --generation_max_length="225" \
30
+ --length_column_name="input_length" \
31
+ --max_duration_in_seconds="30" \
32
+ --text_column_name="transcription" \
33
+ --freeze_feature_encoder="False" \
34
+ --report_to="tensorboard" \
35
+ --metric_for_best_model="wer" \
36
+ --greater_is_better="False" \
37
+ --load_best_model_at_end \
38
+ --gradient_checkpointing \
39
+ --fp16 \
40
+ --do_train \
41
+ --do_eval \
42
+ --predict_with_generate \
43
+ --do_normalize_eval \
44
+ --streaming \
45
+ --use_auth_token
46
+ # --overwrite_output_dir
47
+ # --push_to_hub
scripts/run_eval_whisper_streaming_local.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import re
4
+ import argparse
5
+
6
+ os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["CUDA_VISIBLE_DEVICES"].replace("CUDA", "")
7
+
8
+ from transformers import pipeline
9
+ from transformers.models.whisper.english_normalizer import BasicTextNormalizer
10
+ from datasets import load_dataset, Audio
11
+
12
+ whisper_norm = BasicTextNormalizer()
13
+
14
+ def simple_norm(utt):
15
+ norm_utt = re.sub(r'[^\w\s]', '', utt) # remove punctualisation
16
+ norm_utt = " ".join(norm_utt.split()) # remove whitespaces
17
+ norm_utt = norm_utt.lower()
18
+ return norm_utt
19
+
20
+ def data(dataset):
21
+ for i, item in enumerate(dataset):
22
+ yield {**item["audio"], "reference": item["text"], "utt_id": item["id"]}
23
+
24
+ def get_ckpt(path, ckpt_id):
25
+ if ckpt_id != 0:
26
+ model = os.path.join(path, "checkpoint-%i" % ckpt)
27
+ else:
28
+ dirs = [d for d in os.listdir(path) if d.startswith("checkpoint-")]
29
+ ckpts = [int(d.split('-')[-1]) for d in dirs]
30
+ last_ckpt = sorted(ckpts)[-1]
31
+ model = os.path.join(path, "checkpoint-%s" % last_ckpt)
32
+ return model
33
+
34
+ def main(args):
35
+ batch_size = args.batch_size
36
+
37
+ if args.device == "cpu":
38
+ device_id = -1
39
+ elif args.device == "gpu":
40
+ device_id = 0
41
+ else:
42
+ raise NotImplementedError("unknown device %s, should be cpu/gpu" % args.device)
43
+
44
+ model_dir = os.path.join(args.expdir, args.model_size)
45
+ #model = os.path.join(get_ckpt(model_dir, args.checkpoint), 'pytorch_model.bin')
46
+ #model = get_ckpt(model_dir, args.checkpoint)
47
+
48
+ model = model_dir
49
+ #model = "openai/whisper-tiny"
50
+
51
+ whisper_asr = pipeline(
52
+ "automatic-speech-recognition", model=model, device=device_id
53
+ )
54
+
55
+ whisper_asr.model.config.forced_decoder_ids = (
56
+ whisper_asr.tokenizer.get_decoder_prompt_ids(
57
+ language=args.language, task="transcribe"
58
+ )
59
+ )
60
+
61
+ if args.dataset == 'cgn-dev':
62
+ dataset_path = "./cgn-dev/cgn-dev.py"
63
+ elif args.dataset == 'subs-annot':
64
+ dataset_path = "./subs-annot/subs-annot.py"
65
+ else:
66
+ raise NotImplementedError('unknown dataset %s' % args.dataset)
67
+
68
+ cache_dir = "/esat/audioslave/jponcele/hf_cache"
69
+ dataset = load_dataset(dataset_path, name="raw", split="test", cache_dir=cache_dir, streaming=True)
70
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
71
+
72
+ utterances = []
73
+ predictions = []
74
+ references = []
75
+
76
+ # run streamed inference
77
+ for out in whisper_asr(data(dataset), batch_size=batch_size):
78
+ predictions.append(out["text"])
79
+ utterances.append(out["utt_id"][0])
80
+ references.append(out["reference"][0])
81
+ #break
82
+
83
+ result_dir = os.path.join(args.expdir, "results", args.dataset)
84
+ os.makedirs(result_dir, exist_ok=True)
85
+
86
+ with open(os.path.join(result_dir, "whisper_%s.txt" % args.model_size), "w") as pd:
87
+ for i, utt in enumerate(utterances):
88
+ pred = predictions[i]
89
+ pd.write(utt + ' ' + pred + '\n')
90
+
91
+ with open(os.path.join(result_dir, "whisper_%s_normW.txt" % args.model_size), "w") as pd:
92
+ for i, utt in enumerate(utterances):
93
+ pred = whisper_norm(predictions[i])
94
+ pd.write(utt + ' ' + pred + '\n')
95
+
96
+ with open(os.path.join(result_dir, "whisper_%s_normS.txt" % args.model_size), "w") as pd:
97
+ for i, utt in enumerate(utterances):
98
+ pred = simple_norm(predictions[i])
99
+ pd.write(utt + ' ' + pred + '\n')
100
+
101
+
102
+
103
+ if __name__ == "__main__":
104
+ parser = argparse.ArgumentParser()
105
+
106
+ parser.add_argument(
107
+ "--expdir",
108
+ type=str,
109
+ default="/esat/audioslave/jponcele/whisper/finetuning_event/CGN",
110
+ help="Directory with finetuned models",
111
+ )
112
+ parser.add_argument(
113
+ "--model_size",
114
+ type=str,
115
+ default="tiny",
116
+ help="Model size",
117
+ )
118
+ parser.add_argument(
119
+ "--checkpoint",
120
+ type=int,
121
+ default=0,
122
+ help="Load specific checkpoint. 0 means latest",
123
+ )
124
+ parser.add_argument(
125
+ "--dataset",
126
+ type=str,
127
+ default="cgn-dev",
128
+ help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
129
+ )
130
+ parser.add_argument(
131
+ "--device",
132
+ type=str,
133
+ default="cpu",
134
+ help="cpu/gpu",
135
+ )
136
+ parser.add_argument(
137
+ "--batch_size",
138
+ type=int,
139
+ default=16,
140
+ help="Number of samples to go through each streamed batch.",
141
+ )
142
+ parser.add_argument(
143
+ "--language",
144
+ type=str,
145
+ default="dutch",
146
+ help="Two letter language code for the transcription language, e.g. use 'en' for English.",
147
+ )
148
+
149
+ args = parser.parse_args()
150
+ main(args)
151
+
scripts/run_speech_recognition_seq2seq_streaming.py ADDED
@@ -0,0 +1,634 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for sequence to sequence speech recognition
18
+ with 🤗 Datasets' streaming mode.
19
+ """
20
+ # You can also adapt this script for your own sequence to sequence speech
21
+ # recognition task. Pointers for this are left as comments.
22
+
23
+ import logging
24
+ import os
25
+ import sys
26
+ from dataclasses import dataclass, field
27
+ from typing import Any, Dict, List, Optional, Union
28
+
29
+ os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["CUDA_VISIBLE_DEVICES"].replace("CUDA", "")
30
+
31
+ import datasets
32
+ import torch
33
+ from datasets import DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset
34
+ from torch.utils.data import IterableDataset
35
+
36
+ import evaluate
37
+ import transformers
38
+ from transformers import (
39
+ AutoConfig,
40
+ AutoFeatureExtractor,
41
+ AutoModelForSpeechSeq2Seq,
42
+ AutoProcessor,
43
+ AutoTokenizer,
44
+ HfArgumentParser,
45
+ Seq2SeqTrainer,
46
+ Seq2SeqTrainingArguments,
47
+ TrainerCallback,
48
+ set_seed,
49
+ )
50
+ from transformers.models.whisper.english_normalizer import BasicTextNormalizer
51
+ from transformers.trainer_pt_utils import IterableDatasetShard
52
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
53
+ from transformers.utils import check_min_version, send_example_telemetry
54
+ from transformers.utils.versions import require_version
55
+
56
+
57
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
58
+ check_min_version("4.25.0.dev0")
59
+
60
+ require_version("datasets>=1.18.2", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
61
+
62
+ logger = logging.getLogger(__name__)
63
+
64
+
65
+ @dataclass
66
+ class ModelArguments:
67
+ """
68
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
69
+ """
70
+
71
+ model_name_or_path: str = field(
72
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
73
+ )
74
+ config_name: Optional[str] = field(
75
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
76
+ )
77
+ tokenizer_name: Optional[str] = field(
78
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
79
+ )
80
+ feature_extractor_name: Optional[str] = field(
81
+ default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
82
+ )
83
+ cache_dir: Optional[str] = field(
84
+ default=None,
85
+ metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
86
+ )
87
+ use_fast_tokenizer: bool = field(
88
+ default=True,
89
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
90
+ )
91
+ model_revision: str = field(
92
+ default="main",
93
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
94
+ )
95
+ use_auth_token: bool = field(
96
+ default=False,
97
+ metadata={
98
+ "help": (
99
+ "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
100
+ "with private models)."
101
+ )
102
+ },
103
+ )
104
+ freeze_feature_encoder: bool = field(
105
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
106
+ )
107
+ freeze_encoder: bool = field(
108
+ default=False, metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."}
109
+ )
110
+ forced_decoder_ids: List[List[int]] = field(
111
+ default=None,
112
+ metadata={
113
+ "help": (
114
+ "A list of pairs of integers which indicates a mapping from generation indices to token indices "
115
+ "that will be forced before sampling. For example, [[0, 123]] means the first generated token "
116
+ "will always be a token of index 123."
117
+ )
118
+ },
119
+ )
120
+ suppress_tokens: List[int] = field(
121
+ default=None, metadata={"help": "A list of tokens that will be suppressed at generation."}
122
+ )
123
+ model_index_name: str = field(default=None, metadata={"help": "Pretty name for the model card."})
124
+
125
+
126
+ @dataclass
127
+ class DataTrainingArguments:
128
+ """
129
+ Arguments pertaining to what data we are going to input our model for training and eval.
130
+ """
131
+
132
+ dataset_name: str = field(
133
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
134
+ )
135
+ dataset_config_name: Optional[str] = field(
136
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
137
+ )
138
+ text_column: Optional[str] = field(
139
+ default=None,
140
+ metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
141
+ )
142
+ max_train_samples: Optional[int] = field(
143
+ default=None,
144
+ metadata={
145
+ "help": (
146
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
147
+ "value if set."
148
+ )
149
+ },
150
+ )
151
+ max_eval_samples: Optional[int] = field(
152
+ default=None,
153
+ metadata={
154
+ "help": (
155
+ "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
156
+ "value if set."
157
+ )
158
+ },
159
+ )
160
+ audio_column_name: str = field(
161
+ default="audio",
162
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
163
+ )
164
+ text_column_name: str = field(
165
+ default="text",
166
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
167
+ )
168
+ max_duration_in_seconds: float = field(
169
+ default=20.0,
170
+ metadata={
171
+ "help": (
172
+ "Truncate audio files that are longer than `max_duration_in_seconds` seconds to"
173
+ " 'max_duration_in_seconds`"
174
+ )
175
+ },
176
+ )
177
+ min_duration_in_seconds: float = field(
178
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
179
+ )
180
+ train_split_name: str = field(
181
+ default="train",
182
+ metadata={
183
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
184
+ },
185
+ )
186
+ eval_split_name: str = field(
187
+ default="test",
188
+ metadata={
189
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
190
+ },
191
+ )
192
+ do_lower_case: bool = field(
193
+ default=False,
194
+ metadata={"help": "Whether the target text should be lower cased."},
195
+ )
196
+ do_remove_punctuation: bool = field(
197
+ default=False,
198
+ metadata={"help": "Whether the target text should be striped of punctuation."},
199
+ )
200
+ do_normalize_eval: bool = field(
201
+ default=True,
202
+ metadata={"help": "Whether to normalise the references and predictions in the eval WER calculation."},
203
+ )
204
+ language: str = field(
205
+ default=None,
206
+ metadata={
207
+ "help": (
208
+ "Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
209
+ "only. For English speech recognition, it should be set to `None`."
210
+ )
211
+ },
212
+ )
213
+ task: str = field(
214
+ default="transcribe",
215
+ metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."},
216
+ )
217
+ shuffle_buffer_size: Optional[int] = field(
218
+ default=500,
219
+ metadata={
220
+ "help": (
221
+ "The number of streamed examples to download before shuffling them. The large the buffer, "
222
+ "the closer it is to real offline shuffling."
223
+ )
224
+ },
225
+ )
226
+ streaming: bool = field(
227
+ default=True,
228
+ metadata={"help": "Whether to use streaming mode to load and pre-process the data."},
229
+ )
230
+
231
+
232
+ @dataclass
233
+ class DataCollatorSpeechSeq2SeqWithPadding:
234
+ """
235
+ Data collator that will dynamically pad the inputs received.
236
+ Args:
237
+ processor ([`WhisperProcessor`])
238
+ The processor used for processing the data.
239
+ decoder_start_token_id (`int`)
240
+ The begin-of-sentence of the decoder.
241
+ """
242
+
243
+ processor: Any
244
+ decoder_start_token_id: int
245
+
246
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
247
+ # split inputs and labels since they have to be of different lengths and need
248
+ # different padding methods
249
+ model_input_name = self.processor.model_input_names[0]
250
+ input_features = [{model_input_name: feature[model_input_name]} for feature in features]
251
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
252
+
253
+ batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
254
+
255
+ labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
256
+
257
+ # replace padding with -100 to ignore loss correctly
258
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
259
+
260
+ # if bos token is appended in previous tokenization step,
261
+ # cut bos token here as it's append later anyways
262
+ if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
263
+ labels = labels[:, 1:]
264
+
265
+ batch["labels"] = labels
266
+
267
+ return batch
268
+
269
+
270
+ def load_maybe_streaming_dataset(dataset_name, dataset_config_name, split="train", streaming=True, **kwargs):
271
+ """
272
+ Utility function to load a dataset in streaming mode. For datasets with multiple splits,
273
+ each split is loaded individually and then splits combined by taking alternating examples from
274
+ each (interleaving).
275
+ """
276
+ if "+" in split:
277
+ # load multiple splits separated by the `+` symbol with streaming mode
278
+ dataset_splits = [
279
+ load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=streaming, **kwargs)
280
+ for split_name in split.split("+")
281
+ ]
282
+ # interleave multiple splits to form one dataset
283
+ interleaved_dataset = interleave_datasets(dataset_splits)
284
+ return interleaved_dataset
285
+ else:
286
+ # load a single split *with* streaming mode
287
+ dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=streaming, **kwargs)
288
+ return dataset
289
+
290
+
291
+ def main():
292
+ # 1. Parse input arguments
293
+ # See all possible arguments in src/transformers/training_args.py
294
+ # or by passing the --help flag to this script.
295
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
296
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
297
+
298
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
299
+ # If we pass only one argument to the script and it's the path to a json file,
300
+ # let's parse it to get our arguments.
301
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
302
+ else:
303
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
304
+
305
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
306
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
307
+ send_example_telemetry("run_speech_recognition_seq2seq_streaming", model_args, data_args)
308
+
309
+ # 2. Setup logging
310
+ logging.basicConfig(
311
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
312
+ datefmt="%m/%d/%Y %H:%M:%S",
313
+ handlers=[logging.StreamHandler(sys.stdout)],
314
+ )
315
+ log_level = training_args.get_process_log_level()
316
+ logger.setLevel(log_level)
317
+ datasets.utils.logging.set_verbosity(log_level)
318
+ transformers.utils.logging.set_verbosity(log_level)
319
+ transformers.utils.logging.enable_default_handler()
320
+ transformers.utils.logging.enable_explicit_format()
321
+
322
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
323
+
324
+ # Log on each process the small summary:
325
+ logger.warning(
326
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
327
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
328
+ )
329
+ logger.info(f"Training/evaluation parameters {training_args}")
330
+
331
+ # Set the verbosity to info of the Transformers logger (on main process only):
332
+ if is_main_process(training_args.local_rank):
333
+ transformers.utils.logging.set_verbosity_info()
334
+ logger.info("Training/evaluation parameters %s", training_args)
335
+
336
+ # 3. Detecting last checkpoint and eventually continue from last checkpoint
337
+ last_checkpoint = None
338
+
339
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
340
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
341
+ logger.info(f"Last CHECKPOINT {last_checkpoint}")
342
+
343
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
344
+ raise ValueError(
345
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
346
+ "Use --overwrite_output_dir to overcome."
347
+ )
348
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
349
+ logger.info(
350
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
351
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
352
+ )
353
+
354
+ # Set seed before initializing model.
355
+ set_seed(training_args.seed)
356
+
357
+ # 4. Load dataset
358
+ raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
359
+
360
+ if training_args.do_train:
361
+ raw_datasets["train"] = load_maybe_streaming_dataset(
362
+ data_args.dataset_name,
363
+ data_args.dataset_config_name,
364
+ split=data_args.train_split_name,
365
+ use_auth_token=True if model_args.use_auth_token else None,
366
+ streaming=data_args.streaming,
367
+ )
368
+
369
+ if training_args.do_eval:
370
+ raw_datasets["eval"] = load_maybe_streaming_dataset(
371
+ data_args.dataset_name,
372
+ data_args.dataset_config_name,
373
+ split=data_args.eval_split_name,
374
+ use_auth_token=True if model_args.use_auth_token else None,
375
+ streaming=data_args.streaming,
376
+ )
377
+
378
+ raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys())
379
+
380
+ if data_args.audio_column_name not in raw_datasets_features:
381
+ raise ValueError(
382
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
383
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
384
+ f"{', '.join(raw_datasets_features)}."
385
+ )
386
+
387
+ if data_args.text_column_name not in raw_datasets_features:
388
+ raise ValueError(
389
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
390
+ "Make sure to set `--text_column_name` to the correct text column - one of "
391
+ f"{', '.join(raw_datasets_features)}."
392
+ )
393
+
394
+ # 5. Load pretrained model, tokenizer, and feature extractor
395
+ #
396
+ # Distributed training:
397
+ # The .from_pretrained methods guarantee that only one local process can concurrently
398
+ config = AutoConfig.from_pretrained(
399
+ model_args.config_name if model_args.config_name else model_args.model_name_or_path,
400
+ cache_dir=model_args.cache_dir,
401
+ revision=model_args.model_revision,
402
+ use_auth_token=True if model_args.use_auth_token else None,
403
+ )
404
+
405
+ config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens})
406
+
407
+ if training_args.gradient_checkpointing:
408
+ config.update({"use_cache": False})
409
+
410
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
411
+ model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
412
+ cache_dir=model_args.cache_dir,
413
+ revision=model_args.model_revision,
414
+ use_auth_token=True if model_args.use_auth_token else None,
415
+ )
416
+ tokenizer = AutoTokenizer.from_pretrained(
417
+ model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
418
+ cache_dir=model_args.cache_dir,
419
+ use_fast=model_args.use_fast_tokenizer,
420
+ revision=model_args.model_revision,
421
+ use_auth_token=True if model_args.use_auth_token else None,
422
+ )
423
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
424
+ model_args.model_name_or_path,
425
+ config=config,
426
+ cache_dir=model_args.cache_dir,
427
+ revision=model_args.model_revision,
428
+ use_auth_token=True if model_args.use_auth_token else None,
429
+ )
430
+
431
+ if model.config.decoder_start_token_id is None:
432
+ raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
433
+
434
+ if model_args.freeze_feature_encoder:
435
+ model.freeze_feature_encoder()
436
+
437
+ if model_args.freeze_encoder:
438
+ model.freeze_encoder()
439
+
440
+ if data_args.language is not None:
441
+ # We only need to set the task id when the language is specified (i.e. in a multilingual setting)
442
+ tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task)
443
+
444
+ # 6. Resample speech dataset if necessary
445
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
446
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
447
+ raw_datasets = raw_datasets.cast_column(
448
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
449
+ )
450
+
451
+ # 7. Preprocessing the datasets.
452
+ # We need to read the audio files as arrays and tokenize the targets.
453
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
454
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
455
+ audio_column_name = data_args.audio_column_name
456
+ text_column_name = data_args.text_column_name
457
+ model_input_name = feature_extractor.model_input_names[0]
458
+ do_lower_case = data_args.do_lower_case
459
+ do_remove_punctuation = data_args.do_remove_punctuation
460
+ normalizer = BasicTextNormalizer() # 'official' text normalizer from OpenAI
461
+
462
+ if data_args.max_train_samples is not None:
463
+ raw_datasets["train"] = (
464
+ raw_datasets["train"].take(data_args.max_train_samples)
465
+ if data_args.streaming
466
+ else raw_datasets["train"].select(range(data_args.max_train_samples))
467
+ )
468
+
469
+ if data_args.max_eval_samples is not None:
470
+ raw_datasets["eval"] = (
471
+ raw_datasets["eval"].take(data_args.max_eval_samples)
472
+ if data_args.streaming
473
+ else raw_datasets["eval"].select(range(data_args.max_eval_samples))
474
+ )
475
+
476
+ def prepare_dataset(batch):
477
+ # process audio
478
+ sample = batch[audio_column_name]
479
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
480
+ # process audio length
481
+ batch[model_input_name] = inputs.get(model_input_name)[0]
482
+ batch["input_length"] = len(sample["array"])
483
+
484
+ # process targets
485
+ input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name]
486
+ if do_remove_punctuation:
487
+ input_str = normalizer(input_str).strip()
488
+ batch["labels"] = tokenizer(input_str).input_ids
489
+ return batch
490
+
491
+ with training_args.main_process_first(desc="dataset map pre-processing"):
492
+ vectorized_datasets = raw_datasets.map(
493
+ prepare_dataset,
494
+ remove_columns=raw_datasets_features,
495
+ ).with_format("torch")
496
+
497
+ if training_args.do_train and data_args.streaming:
498
+ # manually shuffle if streaming (done by the trainer for non-streaming)
499
+ vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(
500
+ buffer_size=data_args.shuffle_buffer_size,
501
+ seed=training_args.seed,
502
+ )
503
+
504
+ # filter training data that is shorter than min_input_length or longer than
505
+ # max_input_length
506
+ def is_audio_in_length_range(length):
507
+ return min_input_length < length < max_input_length
508
+
509
+ if training_args.do_train:
510
+ vectorized_datasets["train"] = vectorized_datasets["train"].filter(
511
+ is_audio_in_length_range,
512
+ input_columns=["input_length"],
513
+ )
514
+
515
+ # 8. Load Metric
516
+ metric = evaluate.load("wer")
517
+ do_normalize_eval = data_args.do_normalize_eval
518
+
519
+ def compute_metrics(pred):
520
+ pred_ids = pred.predictions
521
+
522
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
523
+
524
+ pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
525
+ # we do not want to group tokens when computing the metrics
526
+ label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
527
+
528
+ if do_normalize_eval:
529
+ pred_str = [normalizer(pred) for pred in pred_str]
530
+ label_str = [normalizer(label) for label in label_str]
531
+ # filtering step to only evaluate the samples that correspond to non-zero references:
532
+ pred_str = [pred_str[i] for i in range(len(pred_str)) if len(label_str[i]) > 0]
533
+ label_str = [label_str[i] for i in range(len(label_str)) if len(label_str[i]) > 0]
534
+
535
+ wer = 100 * metric.compute(predictions=pred_str, references=label_str)
536
+
537
+ return {"wer": wer}
538
+
539
+ # 9. Create a single speech processor
540
+ if is_main_process(training_args.local_rank):
541
+ # save feature extractor, tokenizer and config
542
+ feature_extractor.save_pretrained(training_args.output_dir)
543
+ tokenizer.save_pretrained(training_args.output_dir)
544
+ config.save_pretrained(training_args.output_dir)
545
+
546
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
547
+
548
+ # 10. Define data collator
549
+ data_collator = DataCollatorSpeechSeq2SeqWithPadding(
550
+ processor=processor,
551
+ decoder_start_token_id=model.config.decoder_start_token_id,
552
+ )
553
+
554
+ # 11. Configure Trainer
555
+ # Trainer callback to reinitialise and reshuffle the streamable datasets at the beginning of each epoch
556
+ # Only required for streaming: Trainer automatically shuffles non-streaming datasets
557
+ class ShuffleCallback(TrainerCallback):
558
+ def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs):
559
+ if isinstance(train_dataloader.dataset, IterableDatasetShard):
560
+ pass # set_epoch() is handled by the Trainer
561
+ elif isinstance(train_dataloader.dataset, IterableDataset):
562
+ train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)
563
+
564
+ # Initialize Trainer
565
+ trainer = Seq2SeqTrainer(
566
+ model=model,
567
+ args=training_args,
568
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
569
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
570
+ tokenizer=feature_extractor,
571
+ data_collator=data_collator,
572
+ compute_metrics=compute_metrics if training_args.predict_with_generate else None,
573
+ callbacks=[ShuffleCallback()] if data_args.streaming else None,
574
+ )
575
+
576
+ # 12. Training
577
+ if training_args.do_train:
578
+ checkpoint = None
579
+ if training_args.resume_from_checkpoint is not None:
580
+ checkpoint = training_args.resume_from_checkpoint
581
+ elif last_checkpoint is not None:
582
+ checkpoint = last_checkpoint
583
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
584
+ trainer.save_model() # Saves the feature extractor too for easy upload
585
+
586
+ metrics = train_result.metrics
587
+ if data_args.max_train_samples:
588
+ metrics["train_samples"] = data_args.max_train_samples
589
+ trainer.log_metrics("train", metrics)
590
+ trainer.save_metrics("train", metrics)
591
+ trainer.save_state()
592
+
593
+ # 13. Evaluation
594
+ results = {}
595
+ if training_args.do_eval:
596
+ logger.info("*** Evaluate ***")
597
+ metrics = trainer.evaluate(
598
+ metric_key_prefix="eval",
599
+ max_length=training_args.generation_max_length,
600
+ num_beams=training_args.generation_num_beams,
601
+ )
602
+ if data_args.max_eval_samples:
603
+ metrics["eval_samples"] = data_args.max_eval_samples
604
+
605
+ trainer.log_metrics("eval", metrics)
606
+ trainer.save_metrics("eval", metrics)
607
+
608
+ # 14. Write Training Stats
609
+ kwargs = {
610
+ "finetuned_from": model_args.model_name_or_path,
611
+ "tasks": "automatic-speech-recognition",
612
+ "tags": "whisper-event",
613
+ }
614
+ if data_args.dataset_name is not None:
615
+ kwargs["dataset_tags"] = data_args.dataset_name
616
+ if data_args.dataset_config_name is not None:
617
+ kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
618
+ else:
619
+ kwargs["dataset"] = data_args.dataset_name
620
+ if "common_voice" in data_args.dataset_name:
621
+ kwargs["language"] = data_args.dataset_config_name[:2]
622
+ if model_args.model_index_name is not None:
623
+ kwargs["model_name"] = model_args.model_index_name
624
+
625
+ if training_args.push_to_hub:
626
+ trainer.push_to_hub(**kwargs)
627
+ else:
628
+ trainer.create_model_card(**kwargs)
629
+
630
+ return results
631
+
632
+
633
+ if __name__ == "__main__":
634
+ main()
scripts/subs-annot.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import kaldiio
3
+
4
+ import datasets
5
+ from transformers.utils import logging
6
+
7
+
8
+ logger = logging.get_logger(__name__)
9
+
10
+ _DESCRIPTION = "Annotated Subtitles"
11
+
12
+ _FILEPATHS = {
13
+ "fbank_pitch": "/esat/spchtemp/scratch/jponcele/espnet2/dump/fbank_pitch/subs_annot",
14
+ "raw": "/esat/spchtemp/scratch/jponcele/espnet2/dump/raw/subs_annot"
15
+ }
16
+
17
+ _FEATURES_NAME = {
18
+ "fbank_pitch": "feats.scp",
19
+ "raw": "wav.scp"
20
+ }
21
+
22
+
23
+ class CGNConfig(datasets.BuilderConfig):
24
+ def __init__(self, **kwargs):
25
+ """
26
+ Args:
27
+ data_dir: `string`, the path to the folder containing the files in the
28
+ downloaded .tar
29
+ citation: `string`, citation for the data set
30
+ url: `string`, url for information about the data set
31
+ **kwargs: keyword arguments forwarded to super.
32
+ """
33
+ super(CGNConfig, self).__init__(version=datasets.Version("2.6.1", ""), **kwargs)
34
+
35
+
36
+ class CGN(datasets.GeneratorBasedBuilder):
37
+
38
+ DEFAULT_WRITER_BATCH_SIZE = 256
39
+ DEFAULT_CONFIG_NAME = "raw"
40
+ BUILDER_CONFIGS = [
41
+ CGNConfig(name="raw", description="All Components")
42
+ ]
43
+
44
+ def _info(self):
45
+ return datasets.DatasetInfo(
46
+ description=_DESCRIPTION,
47
+ features=datasets.Features(
48
+ {
49
+ "audio": datasets.Value("string"),
50
+ "text": datasets.Value("string"),
51
+ "id": datasets.Value("string"),
52
+ }
53
+ ),
54
+ supervised_keys=("text",),
55
+ )
56
+
57
+ def _split_generators(self, _):
58
+
59
+ return [
60
+ datasets.SplitGenerator(
61
+ name="test",
62
+ gen_kwargs={}
63
+ )
64
+ ]
65
+
66
+ def _generate_examples(self):
67
+
68
+ data_dirs = [_FILEPATHS[self.config.name]]
69
+ for data_dir in data_dirs:
70
+ with open(f"{data_dir}/text", "r") as txtfile:
71
+ lines = txtfile.readlines()
72
+ texts = {line.rstrip().split(' ')[0]: ' '.join(line.rstrip().split(' ')[1:]) for line in lines if len(line.rstrip().split(' ')) > 1}
73
+
74
+ featfile = f"{data_dir}/{_FEATURES_NAME[self.config.name]}"
75
+
76
+ with open(featfile, "r") as txtfile:
77
+ feats_generator = dict(map(lambda s: s.strip().split(maxsplit=1), txtfile))
78
+
79
+ #if featfile.endswith(".scp"):
80
+ # feats_generator = kaldiio.load_scp(featfile)
81
+ #elif featfile.endswith(".npz"):
82
+ # feats_generator = np.load(featfile)
83
+
84
+ for key, (uttid, transcript) in enumerate(texts.items()):
85
+ if uttid not in feats_generator:
86
+ logger.warning(f"Missing utterance: {uttid}")
87
+ continue
88
+
89
+ wav = feats_generator[uttid]
90
+ #if isinstance(feats, tuple):
91
+ # sr, feats = feats
92
+ #feats = np.expand_dims(feats, axis=1)
93
+
94
+ yield key, {"audio": wav, "text": transcript, "id": uttid}