word-auto-filled / models.py
kumar9's picture
Create models.py
7c39dc1
raw
history blame
7.66 kB
import torch
from torch import nn
import re
import numpy as np
import pandas as pd
from collections import OrderedDict
import requests
from bs4 import BeautifulSoup
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if device == 'cuda:0':
torch.cuda.set_device(device)
print(device)
def extract_text_from_link(url):
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
text = soup.get_text()
return text
doc = """The word "deep" in "deep learning" refers to the number of layers through which the data is transformed. More precisely,
deep learning systems have a substantial credit assignment path (CAP) depth. The CAP is the chain of transformations from input to
output. CAPs describe potentially causal connections between input and output. For a feedforward neural network, the depth of the
CAPs is that of the network and is the number of hidden layers plus one (as the output layer is also parameterized). For recurrent
neural networks, in which a signal may propagate through a layer more than once, the CAP depth is potentially unlimited.[13] No
universally agreed-upon threshold of depth divides shallow learning from deep learning, but most researchers agree that deep
learning involves CAP depth higher than 2. CAP of depth 2 has been shown to be a universal approximator in the sense that it
can emulate any function.[14] Beyond that, more layers do not add to the function approximator ability of the network. Deep
models (CAP > 2) are able to extract better features than shallow models and hence, extra layers help in learning the features
effectively."""
class Text2Words:
def __init__(self, document):
self.text_all = re.findall(r'\b[A-Za-z]+\b', document)
self.text = list(set(self.text_all))
self.chars_all = ''.join(self.text)
self.chars = self.unique_chars(self.chars_all)
self.int2char = dict(enumerate(self.chars))
self.char2int = {char: ind for ind, char in self.int2char.items()}
self.maxlen = len(max(self.text, key=len))
self.update_text()
self.input_seq_char, self.target_seq_char = self.get_seq_char(self.text)
self.input_seq_index, self.target_seq_index = self.get_seq(self.char2int, self.input_seq_char, self.target_seq_char, len(self.text))
self.dict_size = len(self.char2int)
self.seq_len = self.maxlen - 1
self.batch_size = len(self.text)
self.input_seq = self.one_hot_encode(self.input_seq_index, self.dict_size, self.seq_len, self.batch_size)
def one_hot_encode(self, sequence, dict_size, seq_len, batch_size):
# Creating a multi-dimensional array of zeros with the desired output shape
features = np.zeros((batch_size, seq_len, dict_size), dtype=np.float32)
# Replacing the 0 at the relevant character index with a 1 to represent that character
for i in range(batch_size):
for u in range(seq_len):
features[i, u, sequence[i][u]] = 1
return features
def get_seq(self, char2int, input_seq_char, target_seq_char,n):
x=[]
y=[]
for i in range(n):
x.append([char2int[character] for character in input_seq_char[i]])
y.append([char2int[character] for character in target_seq_char[i]])
return x,y
def get_seq_char(self, text):
input_seq = []
target_seq = []
for i in range(len(text)):
# Remove last character for input sequence
input_seq.append(text[i][:-1])
# Remove first character for target sequence
target_seq.append(text[i][1:])
return input_seq, target_seq
def unique_chars(self, chars_all):
chars = []
for letter in chars_all:
if letter not in chars:
chars.append(letter)
# chars = sorted(chars)
if ' ' not in chars:
chars.append(' ')
return sorted(chars)
def update_text(self):
for i in range(len(self.text)):
while len(self.text[i])<self.maxlen:
self.text[i] += ' '
def description(self):
text = {}
for word in self.text:
char = word[0]
if char not in text:
text[char] = []
text[char].append(word.strip())
for k,v in (sorted(text.items())):
print(f'{k} : {sorted(v)}')
def lengt_analysis(self):
text = {}
words = set(self.text_all)
for word in words:
n = len(word)
if n not in text:
text[n] = []
text[n].append(word.strip())
for k,v in (sorted(text.items())):
print(f'{k} : count = {len(v)} list = {sorted(v)}')
return None # text
def create_object(doc):
return Text2Words(doc)
def get_inputs(obj):
input_seq = torch.tensor(obj.input_seq, device=device)
target_seq_index = torch.tensor(obj.target_seq_index, device=device)
return input_seq, target_seq_index
class Model(nn.Module):
def __init__(self, input_size, output_size, hidden_dim, n_layers):
super(Model, self).__init__()
# Defining some parameters
self.hidden_dim = hidden_dim
self.n_layers = n_layers
#Defining the layers
# RNN Layer
self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)
# Fully connected layer
self.fc = nn.Linear(hidden_dim, output_size)
def forward(self, x):
batch_size = x.size(0)
hidden = self.init_hidden(batch_size)
out, hidden = self.rnn(x, hidden)
out = out.contiguous().view(-1, self.hidden_dim)
out = self.fc(out)
return out, hidden
def init_hidden(self, batch_size):
# This method generates the first hidden state of zeros
torch.manual_seed(42)
hidden = torch.zeros((self.n_layers, batch_size, self.hidden_dim), device=device)
return hidden
def create_model(obj):
model = Model(input_size=obj.dict_size, output_size=obj.dict_size, hidden_dim=2*obj.dict_size, n_layers=1)
model.to(device)
lr=0.01
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
return model, criterion, optimizer
# This function takes in the model and character as arguments and returns the next character prediction and hidden state
def predict(model, character):
# One-hot encoding our input to fit into the model
# print(character)
character = np.array([[obj.char2int[c] for c in character]])
# print(character)
character = obj.one_hot_encode(character, obj.dict_size, character.shape[1], 1)
# print(character,character.shape)
character = torch.tensor(character, device=device)
character.to(device)
out, hidden = model(character)
# print(out, hidden)
prob = nn.functional.softmax(out[-1], dim=0).data
# print(prob)
char_ind = torch.max(prob, dim=0)[1].item()
# print(sorted(prob, reverse=True))
return obj.int2char[char_ind], hidden
# This function takes the desired output length and input characters as arguments, returning the produced sentence
def sample(model, out_len, start='h'):
model.eval() # eval mode
chars = [ch for ch in start]
char = chars[-1]
chars = chars[:-1]
# Now pass in the previous characters and get a new one
while char != ' ':
chars.append(char)
char, h = predict(model, chars)
return ''.join(chars)
def load_checkpoint(filepath):
checkpoint = torch.load(filepath)
# print(checkpoint['state_dict'])
model = checkpoint['model']
# print(model)
model.load_state_dict(checkpoint['state_dict'])
# print(model.parameters())
# for parameter in model.parameters():
# parameter.requires_grad = False
# print(parameter)
model.eval()
return model
model = load_checkpoint('checkpoint.pth')
sample(model, obj.maxlen, 'ap')