kumarkanth218 commited on
Commit
0234554
·
1 Parent(s): 628fbac

upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 275.99 +/- 13.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd0aea93040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd0aea930d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd0aea93160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd0aea931f0>", "_build": "<function ActorCriticPolicy._build at 0x7fd0aea93280>", "forward": "<function ActorCriticPolicy.forward at 0x7fd0aea93310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd0aea933a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd0aea93430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd0aea934c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd0aea93550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd0aea935e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd0aea8f4b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673161979250505464, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1aar3oQKI/+zzJvpoXAr8e8Ja90KFRvgAAAAAAAAAAOm4BvldQUz8yL1i9VsLGvpmny72R8iK9AAAAAAAAAABa8Cg+R0m3PmYx0r3ZG4m+Qn3lPHbeQ70AAAAAAAAAADMp1L2k9Em7623zO/7KpzwQrLY8VtiOvQAAgD8AAAAAbaMYPuseYz9tPge+ZquqvigDVj0/+7m9AAAAAAAAAADa08c9z6wQPe63wb3w9FK+aftyu4qC1DsAAAAAAAAAADPbLbw9ASO7T3tFO1U0lzxDR068mgyCPQAAgD8AAIA/oJwSPl6kxD4ghnq+IyWOvktwNb2OAiS9AAAAAAAAAAAAwDa+g7l5vBJq7bxA/kW70a3lPaZ0HzwAAIA/AACAPwDNpryN0Ck/ADt6Pf6wsr5X7/q7GnRlPQAAAAAAAAAAJh2qvRT8p7pWtYA5NyV6NLrnYzq9rpO4AACAPwAAgD+gl1Q+lEmlPyN/HD8KSbG+Q8pqPjGBLD4AAAAAAAAAAJPhfD7Ucpc/0i+0PtRzqr4+n5g+ee6jPQAAAAAAAAAAM6J9PctJsj8wPc4+TpB1vplaUD033789AAAAAAAAAACt1TS+wZRUPi3OsD1srJK+1+9pvab6rbsAAAAAAAAAAAApUj2f0MG70uytOkLkGjzDvUm9ub4IPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInN8w0eBkcUCUhpRSlIwBbJRNEwGMAXSUR0CbHWqMFUyYdX2UKGgGaAloD0MIc71tpoLAcECUhpRSlGgVTS0BaBZHQJsdf0yxiXp1fZQoaAZoCWgPQwhCWmPQSZpxQJSGlFKUaBVNNAFoFkdAmx8GIsRQJ3V9lChoBmgJaA9DCIhlM4dkrXBAlIaUUpRoFU0mAWgWR0CbH4+1Bt1qdX2UKGgGaAloD0MIUwWjknpscUCUhpRSlGgVTSEBaBZHQJsf6fBeok11fZQoaAZoCWgPQwjEsplDUtxxQJSGlFKUaBVNFwFoFkdAmyGjY287IXV9lChoBmgJaA9DCPymsFJBmHFAlIaUUpRoFU0BAWgWR0CbIhBAfMfSdX2UKGgGaAloD0MIpoC0/4Gea0CUhpRSlGgVTSoBaBZHQJsi1iKBNEh1fZQoaAZoCWgPQwjSpuoeGUhwQJSGlFKUaBVL+GgWR0CbIu94eLeidX2UKGgGaAloD0MIcNI0KNrHcECUhpRSlGgVTSIBaBZHQJsjdA3T/hl1fZQoaAZoCWgPQwi54XfTrcNwQJSGlFKUaBVNEQFoFkdAmyOzHn2ZiXV9lChoBmgJaA9DCBwj2SPUtXNAlIaUUpRoFU0aAWgWR0CbJDjebd8BdX2UKGgGaAloD0MIx2KbVLT/bECUhpRSlGgVTQEBaBZHQJsk1ITXarZ1fZQoaAZoCWgPQwgJbw9CwNJvQJSGlFKUaBVNUwFoFkdAmyVGwmmcfHV9lChoBmgJaA9DCInPnWA/sXBAlIaUUpRoFU1AAWgWR0CbJbMvysjndX2UKGgGaAloD0MIrfvHQrRsckCUhpRSlGgVTUcBaBZHQJsmHbVSXMR1fZQoaAZoCWgPQwhiga/oVp9xQJSGlFKUaBVNVAFoFkdAmybvoaDPGHV9lChoBmgJaA9DCKnZA61APHBAlIaUUpRoFUv1aBZHQJsm98OTaCd1fZQoaAZoCWgPQwikw0MYv0VuQJSGlFKUaBVNEgFoFkdAmydcuvllsnV9lChoBmgJaA9DCKRwPQrXb01AlIaUUpRoFUvPaBZHQJsom99MK1J1fZQoaAZoCWgPQwgVrdwLzOJwQJSGlFKUaBVNCAFoFkdAmyl4Z/CqInV9lChoBmgJaA9DCEceiCzSlHFAlIaUUpRoFU13AWgWR0CbKZ2UjcEedX2UKGgGaAloD0MIf2q8dBN3bkCUhpRSlGgVTSIBaBZHQJsp0c+7lJZ1fZQoaAZoCWgPQwiY/E/+rqlwQJSGlFKUaBVNCQFoFkdAmyrLZezD43V9lChoBmgJaA9DCPt1pztP9mRAlIaUUpRoFU3oA2gWR0CbK5cRDkU9dX2UKGgGaAloD0MISfPHtHa+cECUhpRSlGgVTQ4BaBZHQJsrpePaL4x1fZQoaAZoCWgPQwiF7/0NmlJzQJSGlFKUaBVNIQFoFkdAmyu0+X7cf3V9lChoBmgJaA9DCM1zRL6LNnJAlIaUUpRoFU1DAWgWR0CbK9WFN+LFdX2UKGgGaAloD0MI4/24/bKbckCUhpRSlGgVTS8BaBZHQJstDjIaLn91fZQoaAZoCWgPQwhDN/sDpRlzQJSGlFKUaBVNLAFoFkdAmy1ivkili3V9lChoBmgJaA9DCMnmqnmO4EdAlIaUUpRoFUuwaBZHQJstfTBqKxd1fZQoaAZoCWgPQwjXS1MEeNtwQJSGlFKUaBVNGwFoFkdAmy3NK7I1cnV9lChoBmgJaA9DCIF38ulxzXBAlIaUUpRoFU0AAWgWR0CbLfIlMRHxdX2UKGgGaAloD0MIzy9K0N8LckCUhpRSlGgVTUcBaBZHQJsud8neBQN1fZQoaAZoCWgPQwiU3je+9uxvQJSGlFKUaBVNOgFoFkdAmy/z63y7PXV9lChoBmgJaA9DCMNkqmDU3HBAlIaUUpRoFU1iAWgWR0CbMKPPcBU8dX2UKGgGaAloD0MIzcmLTEAackCUhpRSlGgVTQYBaBZHQJswzSNOuaF1fZQoaAZoCWgPQwiAYfnzbSluQJSGlFKUaBVL5WgWR0CbMfRqGlANdX2UKGgGaAloD0MIXi9NEWCOcUCUhpRSlGgVTT4BaBZHQJsySorFwUB1fZQoaAZoCWgPQwj3yVGAKPRuQJSGlFKUaBVNKwFoFkdAmzMpztCzC3V9lChoBmgJaA9DCBjpRe3+Nm9AlIaUUpRoFU0UAWgWR0CbM1V0cOsldX2UKGgGaAloD0MI24r9ZffvbUCUhpRSlGgVS/loFkdAmzTOqR2bG3V9lChoBmgJaA9DCAvxSLz8xXBAlIaUUpRoFU0TAWgWR0CbNSh9b5dodX2UKGgGaAloD0MIzApFup8XcECUhpRSlGgVTVEBaBZHQJs1pPIn0Cl1fZQoaAZoCWgPQwhTIR6JV8NyQJSGlFKUaBVNAgFoFkdAmzW1o11nunV9lChoBmgJaA9DCPruVpao+HBAlIaUUpRoFUvyaBZHQJs14GhVU+91fZQoaAZoCWgPQwjRdHYy+N1wQJSGlFKUaBVNHQFoFkdAmzXhBVuJlHV9lChoBmgJaA9DCBO4dTePl3JAlIaUUpRoFU1zAWgWR0CbSZrRSgoPdX2UKGgGaAloD0MIxvoGJvdEckCUhpRSlGgVTTIBaBZHQJtKBzzVc2R1fZQoaAZoCWgPQwhau+1Cs8xxQJSGlFKUaBVNJQFoFkdAm0zzXarWAnV9lChoBmgJaA9DCD2Zf/RNmW5AlIaUUpRoFU0tAWgWR0CbTQiwSrYHdX2UKGgGaAloD0MIAOZatICGcECUhpRSlGgVTU8BaBZHQJtNYuIyj591fZQoaAZoCWgPQwi5bHTOz+RvQJSGlFKUaBVNDQFoFkdAm03PLowEhnV9lChoBmgJaA9DCPXXKyw473BAlIaUUpRoFU0AAWgWR0CbTjmALApKdX2UKGgGaAloD0MIAn6NJEEQO0CUhpRSlGgVS5BoFkdAm05w7HQyAXV9lChoBmgJaA9DCFw8vOcARXFAlIaUUpRoFU1mAWgWR0CbUFaHsTnJdX2UKGgGaAloD0MIwXKEDOTtcUCUhpRSlGgVTQUBaBZHQJtQ92MbWEt1fZQoaAZoCWgPQwhLH7qgPn5uQJSGlFKUaBVNIQFoFkdAm1EB/ViF03V9lChoBmgJaA9DCB6mfXP/zW5AlIaUUpRoFU0HAWgWR0CbUTYGt6omdX2UKGgGaAloD0MImdh8XJsAckCUhpRSlGgVTWABaBZHQJtRidAgPmR1fZQoaAZoCWgPQwhXPWAessJvQJSGlFKUaBVNIwFoFkdAm1IAkxASnXV9lChoBmgJaA9DCISAfAkVjXFAlIaUUpRoFU3QAmgWR0CbUldf9gnddX2UKGgGaAloD0MI+fNtwVLsckCUhpRSlGgVTS0BaBZHQJtSwPiDM/11fZQoaAZoCWgPQwiLwcO07w5xQJSGlFKUaBVL/GgWR0CbVQKZ2IO6dX2UKGgGaAloD0MIwOszZ/2/cUCUhpRSlGgVTaABaBZHQJtVXdweeWh1fZQoaAZoCWgPQwitNZTay7NxQJSGlFKUaBVNJwFoFkdAm1X1CHARCnV9lChoBmgJaA9DCGfWUkBap29AlIaUUpRoFU0WAWgWR0CbVis7+1jRdX2UKGgGaAloD0MIDcaIRGGqcUCUhpRSlGgVTToBaBZHQJtWZb+tKZl1fZQoaAZoCWgPQwhOZOYCl7dyQJSGlFKUaBVNIgFoFkdAm1bU0BOpKnV9lChoBmgJaA9DCOiGpuz0bm5AlIaUUpRoFU0iAWgWR0CbVwaqCHymdX2UKGgGaAloD0MIEi7kERyeckCUhpRSlGgVTR4BaBZHQJtZHLfUF0R1fZQoaAZoCWgPQwgQQdXoVYNuQJSGlFKUaBVNJQFoFkdAm1lgU+LWJHV9lChoBmgJaA9DCKZIvhKIaHBAlIaUUpRoFU0eAWgWR0CbWV6GgzxgdX2UKGgGaAloD0MI3lhQGNQ0cUCUhpRSlGgVTUoBaBZHQJtZ6uOjqOd1fZQoaAZoCWgPQwgoYhHDDjduQJSGlFKUaBVL92gWR0CbWerdnCfpdX2UKGgGaAloD0MIu0bLgZ73bUCUhpRSlGgVTQ4BaBZHQJtaGPluFYd1fZQoaAZoCWgPQwiQEVDhiMNuQJSGlFKUaBVNJwFoFkdAm1piJ9AoonV9lChoBmgJaA9DCH4a9+Y3/XJAlIaUUpRoFU1DAWgWR0CbWqjASFoMdX2UKGgGaAloD0MIrir7rghlbkCUhpRSlGgVS/poFkdAm1ziNKh+OXV9lChoBmgJaA9DCLk3v2FiMnBAlIaUUpRoFU0eAWgWR0CbXQJswco6dX2UKGgGaAloD0MI2q7QB4tHcECUhpRSlGgVTR8BaBZHQJtdW/VRUFV1fZQoaAZoCWgPQwjZQLrYdGFyQJSGlFKUaBVL+WgWR0CbXVv863iJdX2UKGgGaAloD0MIOX6oNKJtcUCUhpRSlGgVTRcBaBZHQJter6hxo7F1fZQoaAZoCWgPQwixGHWtfVJyQJSGlFKUaBVNPQFoFkdAm18OQQtjC3V9lChoBmgJaA9DCONuEK0V1W1AlIaUUpRoFU0jAWgWR0CbX0Syt3fRdX2UKGgGaAloD0MIR1hUxOnbcUCUhpRSlGgVTQIBaBZHQJtgjSUkfLd1fZQoaAZoCWgPQwg3qP3WzvpvQJSGlFKUaBVNDAFoFkdAm2DcImgJ1XV9lChoBmgJaA9DCIqQup09SnBAlIaUUpRoFU0bAWgWR0CbYRFF2FFldX2UKGgGaAloD0MI0765v/pibkCUhpRSlGgVS/poFkdAm2ERPKuB+XV9lChoBmgJaA9DCEwceSCyV3FAlIaUUpRoFU0EAWgWR0CbYSa+vhZRdX2UKGgGaAloD0MI8aDZdW9hTUCUhpRSlGgVS8RoFkdAm2Jn4TK1X3V9lChoBmgJaA9DCFExzt/EX3JAlIaUUpRoFU0nAWgWR0CbYui83++/dX2UKGgGaAloD0MIn1VmSqslcUCUhpRSlGgVTUIBaBZHQJtjUpLEk0J1fZQoaAZoCWgPQwhDdAgcyXFwQJSGlFKUaBVNAAFoFkdAm2SSMHbAUXV9lChoBmgJaA9DCAcJUb4g5nJAlIaUUpRoFU0OAWgWR0CbZKP1+RYBdX2UKGgGaAloD0MIhBCQLyGlZUCUhpRSlGgVTegDaBZHQJtlY0Q9RrJ1fZQoaAZoCWgPQwiTV+cYkHZuQJSGlFKUaBVNKQFoFkdAm2XKZpi7TXV9lChoBmgJaA9DCDUqcLJNHHFAlIaUUpRoFUv/aBZHQJtmQsYl6Z91fZQoaAZoCWgPQwjXZ876FEluQJSGlFKUaBVNCAFoFkdAm2a5le4TbnV9lChoBmgJaA9DCNAlHHoLbnBAlIaUUpRoFU0bAWgWR0CbZrZZSvTxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-rupesh.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10fa348b4e85dcc9a09bb7eb99f26270a61f55733803c70381b8ebecad64f739
3
+ size 147198
ppo-LunarLander-v2-rupesh/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-rupesh/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd0aea93040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd0aea930d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd0aea93160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd0aea931f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd0aea93280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd0aea93310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd0aea933a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd0aea93430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd0aea934c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd0aea93550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd0aea935e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd0aea8f4b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673161979250505464,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1aar3oQKI/+zzJvpoXAr8e8Ja90KFRvgAAAAAAAAAAOm4BvldQUz8yL1i9VsLGvpmny72R8iK9AAAAAAAAAABa8Cg+R0m3PmYx0r3ZG4m+Qn3lPHbeQ70AAAAAAAAAADMp1L2k9Em7623zO/7KpzwQrLY8VtiOvQAAgD8AAAAAbaMYPuseYz9tPge+ZquqvigDVj0/+7m9AAAAAAAAAADa08c9z6wQPe63wb3w9FK+aftyu4qC1DsAAAAAAAAAADPbLbw9ASO7T3tFO1U0lzxDR068mgyCPQAAgD8AAIA/oJwSPl6kxD4ghnq+IyWOvktwNb2OAiS9AAAAAAAAAAAAwDa+g7l5vBJq7bxA/kW70a3lPaZ0HzwAAIA/AACAPwDNpryN0Ck/ADt6Pf6wsr5X7/q7GnRlPQAAAAAAAAAAJh2qvRT8p7pWtYA5NyV6NLrnYzq9rpO4AACAPwAAgD+gl1Q+lEmlPyN/HD8KSbG+Q8pqPjGBLD4AAAAAAAAAAJPhfD7Ucpc/0i+0PtRzqr4+n5g+ee6jPQAAAAAAAAAAM6J9PctJsj8wPc4+TpB1vplaUD033789AAAAAAAAAACt1TS+wZRUPi3OsD1srJK+1+9pvab6rbsAAAAAAAAAAAApUj2f0MG70uytOkLkGjzDvUm9ub4IPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInN8w0eBkcUCUhpRSlIwBbJRNEwGMAXSUR0CbHWqMFUyYdX2UKGgGaAloD0MIc71tpoLAcECUhpRSlGgVTS0BaBZHQJsdf0yxiXp1fZQoaAZoCWgPQwhCWmPQSZpxQJSGlFKUaBVNNAFoFkdAmx8GIsRQJ3V9lChoBmgJaA9DCIhlM4dkrXBAlIaUUpRoFU0mAWgWR0CbH4+1Bt1qdX2UKGgGaAloD0MIUwWjknpscUCUhpRSlGgVTSEBaBZHQJsf6fBeok11fZQoaAZoCWgPQwjEsplDUtxxQJSGlFKUaBVNFwFoFkdAmyGjY287IXV9lChoBmgJaA9DCPymsFJBmHFAlIaUUpRoFU0BAWgWR0CbIhBAfMfSdX2UKGgGaAloD0MIpoC0/4Gea0CUhpRSlGgVTSoBaBZHQJsi1iKBNEh1fZQoaAZoCWgPQwjSpuoeGUhwQJSGlFKUaBVL+GgWR0CbIu94eLeidX2UKGgGaAloD0MIcNI0KNrHcECUhpRSlGgVTSIBaBZHQJsjdA3T/hl1fZQoaAZoCWgPQwi54XfTrcNwQJSGlFKUaBVNEQFoFkdAmyOzHn2ZiXV9lChoBmgJaA9DCBwj2SPUtXNAlIaUUpRoFU0aAWgWR0CbJDjebd8BdX2UKGgGaAloD0MIx2KbVLT/bECUhpRSlGgVTQEBaBZHQJsk1ITXarZ1fZQoaAZoCWgPQwgJbw9CwNJvQJSGlFKUaBVNUwFoFkdAmyVGwmmcfHV9lChoBmgJaA9DCInPnWA/sXBAlIaUUpRoFU1AAWgWR0CbJbMvysjndX2UKGgGaAloD0MIrfvHQrRsckCUhpRSlGgVTUcBaBZHQJsmHbVSXMR1fZQoaAZoCWgPQwhiga/oVp9xQJSGlFKUaBVNVAFoFkdAmybvoaDPGHV9lChoBmgJaA9DCKnZA61APHBAlIaUUpRoFUv1aBZHQJsm98OTaCd1fZQoaAZoCWgPQwikw0MYv0VuQJSGlFKUaBVNEgFoFkdAmydcuvllsnV9lChoBmgJaA9DCKRwPQrXb01AlIaUUpRoFUvPaBZHQJsom99MK1J1fZQoaAZoCWgPQwgVrdwLzOJwQJSGlFKUaBVNCAFoFkdAmyl4Z/CqInV9lChoBmgJaA9DCEceiCzSlHFAlIaUUpRoFU13AWgWR0CbKZ2UjcEedX2UKGgGaAloD0MIf2q8dBN3bkCUhpRSlGgVTSIBaBZHQJsp0c+7lJZ1fZQoaAZoCWgPQwiY/E/+rqlwQJSGlFKUaBVNCQFoFkdAmyrLZezD43V9lChoBmgJaA9DCPt1pztP9mRAlIaUUpRoFU3oA2gWR0CbK5cRDkU9dX2UKGgGaAloD0MISfPHtHa+cECUhpRSlGgVTQ4BaBZHQJsrpePaL4x1fZQoaAZoCWgPQwiF7/0NmlJzQJSGlFKUaBVNIQFoFkdAmyu0+X7cf3V9lChoBmgJaA9DCM1zRL6LNnJAlIaUUpRoFU1DAWgWR0CbK9WFN+LFdX2UKGgGaAloD0MI4/24/bKbckCUhpRSlGgVTS8BaBZHQJstDjIaLn91fZQoaAZoCWgPQwhDN/sDpRlzQJSGlFKUaBVNLAFoFkdAmy1ivkili3V9lChoBmgJaA9DCMnmqnmO4EdAlIaUUpRoFUuwaBZHQJstfTBqKxd1fZQoaAZoCWgPQwjXS1MEeNtwQJSGlFKUaBVNGwFoFkdAmy3NK7I1cnV9lChoBmgJaA9DCIF38ulxzXBAlIaUUpRoFU0AAWgWR0CbLfIlMRHxdX2UKGgGaAloD0MIzy9K0N8LckCUhpRSlGgVTUcBaBZHQJsud8neBQN1fZQoaAZoCWgPQwiU3je+9uxvQJSGlFKUaBVNOgFoFkdAmy/z63y7PXV9lChoBmgJaA9DCMNkqmDU3HBAlIaUUpRoFU1iAWgWR0CbMKPPcBU8dX2UKGgGaAloD0MIzcmLTEAackCUhpRSlGgVTQYBaBZHQJswzSNOuaF1fZQoaAZoCWgPQwiAYfnzbSluQJSGlFKUaBVL5WgWR0CbMfRqGlANdX2UKGgGaAloD0MIXi9NEWCOcUCUhpRSlGgVTT4BaBZHQJsySorFwUB1fZQoaAZoCWgPQwj3yVGAKPRuQJSGlFKUaBVNKwFoFkdAmzMpztCzC3V9lChoBmgJaA9DCBjpRe3+Nm9AlIaUUpRoFU0UAWgWR0CbM1V0cOsldX2UKGgGaAloD0MI24r9ZffvbUCUhpRSlGgVS/loFkdAmzTOqR2bG3V9lChoBmgJaA9DCAvxSLz8xXBAlIaUUpRoFU0TAWgWR0CbNSh9b5dodX2UKGgGaAloD0MIzApFup8XcECUhpRSlGgVTVEBaBZHQJs1pPIn0Cl1fZQoaAZoCWgPQwhTIR6JV8NyQJSGlFKUaBVNAgFoFkdAmzW1o11nunV9lChoBmgJaA9DCPruVpao+HBAlIaUUpRoFUvyaBZHQJs14GhVU+91fZQoaAZoCWgPQwjRdHYy+N1wQJSGlFKUaBVNHQFoFkdAmzXhBVuJlHV9lChoBmgJaA9DCBO4dTePl3JAlIaUUpRoFU1zAWgWR0CbSZrRSgoPdX2UKGgGaAloD0MIxvoGJvdEckCUhpRSlGgVTTIBaBZHQJtKBzzVc2R1fZQoaAZoCWgPQwhau+1Cs8xxQJSGlFKUaBVNJQFoFkdAm0zzXarWAnV9lChoBmgJaA9DCD2Zf/RNmW5AlIaUUpRoFU0tAWgWR0CbTQiwSrYHdX2UKGgGaAloD0MIAOZatICGcECUhpRSlGgVTU8BaBZHQJtNYuIyj591fZQoaAZoCWgPQwi5bHTOz+RvQJSGlFKUaBVNDQFoFkdAm03PLowEhnV9lChoBmgJaA9DCPXXKyw473BAlIaUUpRoFU0AAWgWR0CbTjmALApKdX2UKGgGaAloD0MIAn6NJEEQO0CUhpRSlGgVS5BoFkdAm05w7HQyAXV9lChoBmgJaA9DCFw8vOcARXFAlIaUUpRoFU1mAWgWR0CbUFaHsTnJdX2UKGgGaAloD0MIwXKEDOTtcUCUhpRSlGgVTQUBaBZHQJtQ92MbWEt1fZQoaAZoCWgPQwhLH7qgPn5uQJSGlFKUaBVNIQFoFkdAm1EB/ViF03V9lChoBmgJaA9DCB6mfXP/zW5AlIaUUpRoFU0HAWgWR0CbUTYGt6omdX2UKGgGaAloD0MImdh8XJsAckCUhpRSlGgVTWABaBZHQJtRidAgPmR1fZQoaAZoCWgPQwhXPWAessJvQJSGlFKUaBVNIwFoFkdAm1IAkxASnXV9lChoBmgJaA9DCISAfAkVjXFAlIaUUpRoFU3QAmgWR0CbUldf9gnddX2UKGgGaAloD0MI+fNtwVLsckCUhpRSlGgVTS0BaBZHQJtSwPiDM/11fZQoaAZoCWgPQwiLwcO07w5xQJSGlFKUaBVL/GgWR0CbVQKZ2IO6dX2UKGgGaAloD0MIwOszZ/2/cUCUhpRSlGgVTaABaBZHQJtVXdweeWh1fZQoaAZoCWgPQwitNZTay7NxQJSGlFKUaBVNJwFoFkdAm1X1CHARCnV9lChoBmgJaA9DCGfWUkBap29AlIaUUpRoFU0WAWgWR0CbVis7+1jRdX2UKGgGaAloD0MIDcaIRGGqcUCUhpRSlGgVTToBaBZHQJtWZb+tKZl1fZQoaAZoCWgPQwhOZOYCl7dyQJSGlFKUaBVNIgFoFkdAm1bU0BOpKnV9lChoBmgJaA9DCOiGpuz0bm5AlIaUUpRoFU0iAWgWR0CbVwaqCHymdX2UKGgGaAloD0MIEi7kERyeckCUhpRSlGgVTR4BaBZHQJtZHLfUF0R1fZQoaAZoCWgPQwgQQdXoVYNuQJSGlFKUaBVNJQFoFkdAm1lgU+LWJHV9lChoBmgJaA9DCKZIvhKIaHBAlIaUUpRoFU0eAWgWR0CbWV6GgzxgdX2UKGgGaAloD0MI3lhQGNQ0cUCUhpRSlGgVTUoBaBZHQJtZ6uOjqOd1fZQoaAZoCWgPQwgoYhHDDjduQJSGlFKUaBVL92gWR0CbWerdnCfpdX2UKGgGaAloD0MIu0bLgZ73bUCUhpRSlGgVTQ4BaBZHQJtaGPluFYd1fZQoaAZoCWgPQwiQEVDhiMNuQJSGlFKUaBVNJwFoFkdAm1piJ9AoonV9lChoBmgJaA9DCH4a9+Y3/XJAlIaUUpRoFU1DAWgWR0CbWqjASFoMdX2UKGgGaAloD0MIrir7rghlbkCUhpRSlGgVS/poFkdAm1ziNKh+OXV9lChoBmgJaA9DCLk3v2FiMnBAlIaUUpRoFU0eAWgWR0CbXQJswco6dX2UKGgGaAloD0MI2q7QB4tHcECUhpRSlGgVTR8BaBZHQJtdW/VRUFV1fZQoaAZoCWgPQwjZQLrYdGFyQJSGlFKUaBVL+WgWR0CbXVv863iJdX2UKGgGaAloD0MIOX6oNKJtcUCUhpRSlGgVTRcBaBZHQJter6hxo7F1fZQoaAZoCWgPQwixGHWtfVJyQJSGlFKUaBVNPQFoFkdAm18OQQtjC3V9lChoBmgJaA9DCONuEK0V1W1AlIaUUpRoFU0jAWgWR0CbX0Syt3fRdX2UKGgGaAloD0MIR1hUxOnbcUCUhpRSlGgVTQIBaBZHQJtgjSUkfLd1fZQoaAZoCWgPQwg3qP3WzvpvQJSGlFKUaBVNDAFoFkdAm2DcImgJ1XV9lChoBmgJaA9DCIqQup09SnBAlIaUUpRoFU0bAWgWR0CbYRFF2FFldX2UKGgGaAloD0MI0765v/pibkCUhpRSlGgVS/poFkdAm2ERPKuB+XV9lChoBmgJaA9DCEwceSCyV3FAlIaUUpRoFU0EAWgWR0CbYSa+vhZRdX2UKGgGaAloD0MI8aDZdW9hTUCUhpRSlGgVS8RoFkdAm2Jn4TK1X3V9lChoBmgJaA9DCFExzt/EX3JAlIaUUpRoFU0nAWgWR0CbYui83++/dX2UKGgGaAloD0MIn1VmSqslcUCUhpRSlGgVTUIBaBZHQJtjUpLEk0J1fZQoaAZoCWgPQwhDdAgcyXFwQJSGlFKUaBVNAAFoFkdAm2SSMHbAUXV9lChoBmgJaA9DCAcJUb4g5nJAlIaUUpRoFU0OAWgWR0CbZKP1+RYBdX2UKGgGaAloD0MIhBCQLyGlZUCUhpRSlGgVTegDaBZHQJtlY0Q9RrJ1fZQoaAZoCWgPQwiTV+cYkHZuQJSGlFKUaBVNKQFoFkdAm2XKZpi7TXV9lChoBmgJaA9DCDUqcLJNHHFAlIaUUpRoFUv/aBZHQJtmQsYl6Z91fZQoaAZoCWgPQwjXZ876FEluQJSGlFKUaBVNCAFoFkdAm2a5le4TbnV9lChoBmgJaA9DCNAlHHoLbnBAlIaUUpRoFU0bAWgWR0CbZrZZSvTxdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-rupesh/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aebe642083dddff7a545440d091665717fb41c6642fb471854df55c893dc3ca9
3
+ size 87929
ppo-LunarLander-v2-rupesh/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:484ba6f837863ae0a9b6d742f23ee4c366d1686a0764d9c9438b2fb7f74463de
3
+ size 43201
ppo-LunarLander-v2-rupesh/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-rupesh/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (244 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 275.9921785917972, "std_reward": 13.557172554740406, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T07:45:29.395337"}