kunalr63 commited on
Commit
3e8a7b6
1 Parent(s): c15e787

model ready

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.85 +/- 21.15
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f416d5ef280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f416d5ef310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f416d5ef3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f416d5ef430>", "_build": "<function ActorCriticPolicy._build at 0x7f416d5ef4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f416d5ef550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f416d5ef5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f416d5ef670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f416d5ef700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f416d5ef790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f416d5ef820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f416d5ef8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f416d5eb810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678080503590686873, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM08HzzrCMs9tSJovFK6ML6DrEY9qBOjOwAAAAAAAAAAM4OlPDUxkT+x48q8GaSsvkyszLu87A+9AAAAAAAAAADNxjo8hQvTufLaBTlaCT2zJifyuiKOHbgAAIA/AACAP4CU9z0hkVg+qiDavZx0cr4y61m8FqLbPAAAAAAAAAAAgH9oPcNlabp4QHezVJXrLsaVgzvmMLozAACAPwAAgD8zz8w7SOeiumJDDbWrtcOukmukOhgCcDQAAIA/AACAP2b81zx7hqG6DmMCu2VCB7mT+Yo6DeOKOAAAgD8AAIA/QIu/PQdlST5qSwa+5+gxvpJNmLwG8dO9AAAAAAAAAACaPQ28/SUEPJTWqryT9Dm+rjxvvY3vpj0AAAAAAAAAADMZKjziKhM+22vnvBamQL5WrB89wdtHPAAAAAAAAAAATWdxvu9QUj9GD0e7rCeGvh3ucr7S6hA+AAAAAAAAAACNqMM9/qXAP/NG6D6ynDS9s6u7PVB4LD4AAAAAAAAAAPM+pj3ZQZs+zg5qvl7+h74ligK9oGObPAAAAAAAAAAALYc/PpnZ0z4W5o6+jS+SvpV1Mr2l+YQ8AAAAAAAAAAAg/4U+/eyVPjryZb613o++LRQeu6Nuzb0AAAAAAAAAAE1nRr0Uw+c+DuT2PZDElr63GIQ9zSrovQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhxivedVXcUCUhpRSlIwBbJRNMQGMAXSUR0CW31mnwXqJdX2UKGgGaAloD0MIQURq2kXjcECUhpRSlGgVTTwBaBZHQJbhMAXEZR91fZQoaAZoCWgPQwjhQh7BjXBMQJSGlFKUaBVN6ANoFkdAluKq77Kq43V9lChoBmgJaA9DCF6fOeuTTnFAlIaUUpRoFUv1aBZHQJbi25nUUfx1fZQoaAZoCWgPQwg4MLlRZHZsQJSGlFKUaBVNWQFoFkdAluOCOq//N3V9lChoBmgJaA9DCGNEotByTXNAlIaUUpRoFU0FAWgWR0CW448O09hadX2UKGgGaAloD0MIMUROXw8dcUCUhpRSlGgVTTkBaBZHQJbkA+QlruZ1fZQoaAZoCWgPQwh2/YLdsItxQJSGlFKUaBVNZQFoFkdAluQH1zySWHV9lChoBmgJaA9DCPHXZI16EFJAlIaUUpRoFUvIaBZHQJbksg9vCMx1fZQoaAZoCWgPQwiH/Z5YJ3RvQJSGlFKUaBVNGgFoFkdAluZLmdRR/HV9lChoBmgJaA9DCD53gv3XRW9AlIaUUpRoFU1RAWgWR0CW5nDjR2KVdX2UKGgGaAloD0MIK4pXWdtEcUCUhpRSlGgVTQUBaBZHQJbpA0iyIHl1fZQoaAZoCWgPQwhiEcMO4yRuQJSGlFKUaBVNGgFoFkdAlukkEcKgI3V9lChoBmgJaA9DCPhSeNAsHnBAlIaUUpRoFU0JAWgWR0CW6XqaPS2IdX2UKGgGaAloD0MIycovg3EvcECUhpRSlGgVTSoBaBZHQJbqC3Zwn6V1fZQoaAZoCWgPQwiwOnKkMzFvQJSGlFKUaBVNIgFoFkdAlupfw7T2FnV9lChoBmgJaA9DCJhtp63RknBAlIaUUpRoFU2QAWgWR0CW7AEFnqVydX2UKGgGaAloD0MIfSB555BKcUCUhpRSlGgVTSABaBZHQJbsgFY+0PZ1fZQoaAZoCWgPQwi7KlCLQWVwQJSGlFKUaBVNGQFoFkdAlu1HIU8FIXV9lChoBmgJaA9DCBgIAmRozm5AlIaUUpRoFU0+AWgWR0CW7bcPvrnldX2UKGgGaAloD0MISWb1DjeWckCUhpRSlGgVTTABaBZHQJbtwnJDE3t1fZQoaAZoCWgPQwjSjbCoyCxwQJSGlFKUaBVNaAFoFkdAlu4BR/EwWXV9lChoBmgJaA9DCFVMpZ9w0HBAlIaUUpRoFU0eAWgWR0CW7hFYuCf6dX2UKGgGaAloD0MIh6OrdPcvcECUhpRSlGgVTQUBaBZHQJbuiZH/cWV1fZQoaAZoCWgPQwho6Qq2EYxxQJSGlFKUaBVNRAFoFkdAlu6ZhjOLSHV9lChoBmgJaA9DCLggW5bvL3BAlIaUUpRoFU13AWgWR0CW76/JeVs2dX2UKGgGaAloD0MIQPZ698e5R0CUhpRSlGgVS95oFkdAlu/+0b961XV9lChoBmgJaA9DCDohdNAlf29AlIaUUpRoFU1DAWgWR0CW8GFQ2uPndX2UKGgGaAloD0MIZwsIrYdnQUCUhpRSlGgVS+5oFkdAlvCGj0th/nV9lChoBmgJaA9DCLA9syQA/3BAlIaUUpRoFU0HAWgWR0CW8fA5Jbt7dX2UKGgGaAloD0MIKa4q++6icUCUhpRSlGgVTUIBaBZHQJbzOg8KXv91fZQoaAZoCWgPQwgfTfVkPhZxQJSGlFKUaBVNDgFoFkdAlvQcDwH7g3V9lChoBmgJaA9DCFtbeF5qpXJAlIaUUpRoFU1EAWgWR0CW9EKOT7l8dX2UKGgGaAloD0MILsvXZfgcbkCUhpRSlGgVTSABaBZHQJb1LarWAgB1fZQoaAZoCWgPQwggtYmTuzVxQJSGlFKUaBVNEgFoFkdAlvVroOhCdHV9lChoBmgJaA9DCBq/8EoSJ3BAlIaUUpRoFU0pAWgWR0CW9pBNmDlHdX2UKGgGaAloD0MIEMr7OJqgckCUhpRSlGgVTTQBaBZHQJb2+Qjlgc91fZQoaAZoCWgPQwgaahSSTNZvQJSGlFKUaBVNIAFoFkdAlvcyONo8IXV9lChoBmgJaA9DCHQK8rORum9AlIaUUpRoFU05AWgWR0CW914vexfOdX2UKGgGaAloD0MIAKjixu2ncUCUhpRSlGgVTSIBaBZHQJb47JZGKAJ1fZQoaAZoCWgPQwgvo1huaettQJSGlFKUaBVNNgFoFkdAlvk64hEBsHV9lChoBmgJaA9DCFvuzARDynJAlIaUUpRoFU1gAWgWR0CW+UfSx7iRdX2UKGgGaAloD0MIsRcK2E4GckCUhpRSlGgVTSoBaBZHQJb5mZ1FH8V1fZQoaAZoCWgPQwi7RPXWgKNxQJSGlFKUaBVNnQFoFkdAlvp5SeiBXnV9lChoBmgJaA9DCIW1MXZC325AlIaUUpRoFU1VAWgWR0CW+xKMvRJFdX2UKGgGaAloD0MIyhe0kIB5bkCUhpRSlGgVTSkBaBZHQJb7VuZThpB1fZQoaAZoCWgPQwhZGCKnb+tyQJSGlFKUaBVNDwFoFkdAlvvFxS5y2nV9lChoBmgJaA9DCCAot+27/XJAlIaUUpRoFUv6aBZHQJcR1vWH1vl1fZQoaAZoCWgPQwi2oWKc//dxQJSGlFKUaBVNJQFoFkdAlxH9DMNc4nV9lChoBmgJaA9DCLn7HB+tDG1AlIaUUpRoFU0kAWgWR0CXE2U2DQJHdX2UKGgGaAloD0MImyFVFG+FcECUhpRSlGgVTUsBaBZHQJcT5abF0gd1fZQoaAZoCWgPQwizmq4neptwQJSGlFKUaBVL+2gWR0CXFInRsuWbdX2UKGgGaAloD0MIWYl5VtJ0b0CUhpRSlGgVTSoBaBZHQJcWddiUgSx1fZQoaAZoCWgPQwiph2h0R59xQJSGlFKUaBVNQwFoFkdAlxa72lEZznV9lChoBmgJaA9DCAfTMHyE+3FAlIaUUpRoFU1AAWgWR0CXFykzXSSedX2UKGgGaAloD0MIQWX8+8y3cECUhpRSlGgVTRcBaBZHQJcYqHxjJ+51fZQoaAZoCWgPQwiA0lCjEIlvQJSGlFKUaBVNIwFoFkdAlxlf4h2W6nV9lChoBmgJaA9DCMGLvoK0N29AlIaUUpRoFU1PAWgWR0CXGw+so2GZdX2UKGgGaAloD0MIl8gFZ/DvcUCUhpRSlGgVTQIBaBZHQJcbOvV3EAJ1fZQoaAZoCWgPQwg+kpIeBqxvQJSGlFKUaBVNHAFoFkdAlxwQgPmPo3V9lChoBmgJaA9DCIOHad/cWnBAlIaUUpRoFU1QAWgWR0CXHDT8YQ8PdX2UKGgGaAloD0MIkiBcAYWEckCUhpRSlGgVTRIBaBZHQJccsd3jdYZ1fZQoaAZoCWgPQwgiUP2DyBlxQJSGlFKUaBVNUwFoFkdAlx2cjNY8uHV9lChoBmgJaA9DCDXwoxo2ZHJAlIaUUpRoFU0BAWgWR0CXHfmh/RVqdX2UKGgGaAloD0MIKBB2ihWUcECUhpRSlGgVTRABaBZHQJceeUgSvkl1fZQoaAZoCWgPQwhW0opv6MFxQJSGlFKUaBVNKAFoFkdAlyDvGZNO/XV9lChoBmgJaA9DCKVPq+jPBHBAlIaUUpRoFU0uAWgWR0CXIYEwFkhBdX2UKGgGaAloD0MIzCcrhis0cUCUhpRSlGgVTRoBaBZHQJci7BuXNTt1fZQoaAZoCWgPQwj4MlGE1IZyQJSGlFKUaBVNFAFoFkdAlyMJV0cOsnV9lChoBmgJaA9DCNo8DoN5V29AlIaUUpRoFU1QAWgWR0CXIyjJ+2E1dX2UKGgGaAloD0MIl+XrMvyybECUhpRSlGgVTSUBaBZHQJckmi+L3sZ1fZQoaAZoCWgPQwhoIJbNHOdyQJSGlFKUaBVNHgFoFkdAlyYhoqTbFnV9lChoBmgJaA9DCHh7EAKyunJAlIaUUpRoFU18AWgWR0CXJi+l0o0AdX2UKGgGaAloD0MIJVmHo6uPcECUhpRSlGgVTUoBaBZHQJcmhpXZGrl1fZQoaAZoCWgPQwjOVIhH4tNuQJSGlFKUaBVNJwFoFkdAlyc5rk8zRHV9lChoBmgJaA9DCBR4J58edW5AlIaUUpRoFU0KAWgWR0CXJ1ssg+yJdX2UKGgGaAloD0MIjE0rhQBQcECUhpRSlGgVTTUBaBZHQJcnjwlSjxl1fZQoaAZoCWgPQwgCSkONwl9vQJSGlFKUaBVNUAFoFkdAlyfcYqG1yHV9lChoBmgJaA9DCF3hXS7ieXJAlIaUUpRoFU0/AWgWR0CXKE1y/9HddX2UKGgGaAloD0MIstmR6jvsckCUhpRSlGgVTSUBaBZHQJcobNgSey11fZQoaAZoCWgPQwiG5jqNNOxvQJSGlFKUaBVNHAFoFkdAlyiGSdOIqXV9lChoBmgJaA9DCDSFzmssq3FAlIaUUpRoFU0kAWgWR0CXKtDzyz5XdX2UKGgGaAloD0MIQSybOST6ckCUhpRSlGgVTQABaBZHQJcrBC+lCTl1fZQoaAZoCWgPQwjN6EfDqfFyQJSGlFKUaBVNXAFoFkdAlywAZOzpo3V9lChoBmgJaA9DCOLmVDIA6lFAlIaUUpRoFUu9aBZHQJcsF22XsxB1fZQoaAZoCWgPQwielbTimwxwQJSGlFKUaBVNIgFoFkdAlyxI3R5TqHV9lChoBmgJaA9DCM9m1ecqfnBAlIaUUpRoFU0uAWgWR0CXLITlDF6zdX2UKGgGaAloD0MIoOHNGrwhcECUhpRSlGgVTRIBaBZHQJctDgEU0vZ1fZQoaAZoCWgPQwhZxLDDGGtuQJSGlFKUaBVNGwFoFkdAly6W1IAfdXV9lChoBmgJaA9DCIs4nWSr3FJAlIaUUpRoFUv7aBZHQJcul8Sf16F1fZQoaAZoCWgPQwhwsg3cwWtyQJSGlFKUaBVNIAFoFkdAly7JWNm16XV9lChoBmgJaA9DCFHc8Sa/uG9AlIaUUpRoFU0DAWgWR0CXL+s0YTCcdX2UKGgGaAloD0MI1ZKOcrA7b0CUhpRSlGgVTSgBaBZHQJcwGOtGNJh1fZQoaAZoCWgPQwiC/kKPmO5sQJSGlFKUaBVNMAFoFkdAlzCFndweeXV9lChoBmgJaA9DCDfCoiJOf29AlIaUUpRoFU0qAWgWR0CXMKQC0WuYdX2UKGgGaAloD0MINbQB2ACkcECUhpRSlGgVTR0BaBZHQJcw414xDb91fZQoaAZoCWgPQwhbQ6m9SAZwQJSGlFKUaBVNKgFoFkdAlzEnG4qgAnV9lChoBmgJaA9DCP+z5sefvHFAlIaUUpRoFU0FAWgWR0CXMqFfzBhydX2UKGgGaAloD0MIGRu62V9Ic0CUhpRSlGgVTRYBaBZHQJcy8ppeu3d1fZQoaAZoCWgPQwgPgSOBRnRxQJSGlFKUaBVNFwFoFkdAlzQy5Zr57HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a1345d9d062d0a92c7f55d41e4288ff3ece897c515035690e773a251bd7d652
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f416d5ef280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f416d5ef310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f416d5ef3a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f416d5ef430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f416d5ef4c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f416d5ef550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f416d5ef5e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f416d5ef670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f416d5ef700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f416d5ef790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f416d5ef820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f416d5ef8b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f416d5eb810>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678080503590686873,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM08HzzrCMs9tSJovFK6ML6DrEY9qBOjOwAAAAAAAAAAM4OlPDUxkT+x48q8GaSsvkyszLu87A+9AAAAAAAAAADNxjo8hQvTufLaBTlaCT2zJifyuiKOHbgAAIA/AACAP4CU9z0hkVg+qiDavZx0cr4y61m8FqLbPAAAAAAAAAAAgH9oPcNlabp4QHezVJXrLsaVgzvmMLozAACAPwAAgD8zz8w7SOeiumJDDbWrtcOukmukOhgCcDQAAIA/AACAP2b81zx7hqG6DmMCu2VCB7mT+Yo6DeOKOAAAgD8AAIA/QIu/PQdlST5qSwa+5+gxvpJNmLwG8dO9AAAAAAAAAACaPQ28/SUEPJTWqryT9Dm+rjxvvY3vpj0AAAAAAAAAADMZKjziKhM+22vnvBamQL5WrB89wdtHPAAAAAAAAAAATWdxvu9QUj9GD0e7rCeGvh3ucr7S6hA+AAAAAAAAAACNqMM9/qXAP/NG6D6ynDS9s6u7PVB4LD4AAAAAAAAAAPM+pj3ZQZs+zg5qvl7+h74ligK9oGObPAAAAAAAAAAALYc/PpnZ0z4W5o6+jS+SvpV1Mr2l+YQ8AAAAAAAAAAAg/4U+/eyVPjryZb613o++LRQeu6Nuzb0AAAAAAAAAAE1nRr0Uw+c+DuT2PZDElr63GIQ9zSrovQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhxivedVXcUCUhpRSlIwBbJRNMQGMAXSUR0CW31mnwXqJdX2UKGgGaAloD0MIQURq2kXjcECUhpRSlGgVTTwBaBZHQJbhMAXEZR91fZQoaAZoCWgPQwjhQh7BjXBMQJSGlFKUaBVN6ANoFkdAluKq77Kq43V9lChoBmgJaA9DCF6fOeuTTnFAlIaUUpRoFUv1aBZHQJbi25nUUfx1fZQoaAZoCWgPQwg4MLlRZHZsQJSGlFKUaBVNWQFoFkdAluOCOq//N3V9lChoBmgJaA9DCGNEotByTXNAlIaUUpRoFU0FAWgWR0CW448O09hadX2UKGgGaAloD0MIMUROXw8dcUCUhpRSlGgVTTkBaBZHQJbkA+QlruZ1fZQoaAZoCWgPQwh2/YLdsItxQJSGlFKUaBVNZQFoFkdAluQH1zySWHV9lChoBmgJaA9DCPHXZI16EFJAlIaUUpRoFUvIaBZHQJbksg9vCMx1fZQoaAZoCWgPQwiH/Z5YJ3RvQJSGlFKUaBVNGgFoFkdAluZLmdRR/HV9lChoBmgJaA9DCD53gv3XRW9AlIaUUpRoFU1RAWgWR0CW5nDjR2KVdX2UKGgGaAloD0MIK4pXWdtEcUCUhpRSlGgVTQUBaBZHQJbpA0iyIHl1fZQoaAZoCWgPQwhiEcMO4yRuQJSGlFKUaBVNGgFoFkdAlukkEcKgI3V9lChoBmgJaA9DCPhSeNAsHnBAlIaUUpRoFU0JAWgWR0CW6XqaPS2IdX2UKGgGaAloD0MIycovg3EvcECUhpRSlGgVTSoBaBZHQJbqC3Zwn6V1fZQoaAZoCWgPQwiwOnKkMzFvQJSGlFKUaBVNIgFoFkdAlupfw7T2FnV9lChoBmgJaA9DCJhtp63RknBAlIaUUpRoFU2QAWgWR0CW7AEFnqVydX2UKGgGaAloD0MIfSB555BKcUCUhpRSlGgVTSABaBZHQJbsgFY+0PZ1fZQoaAZoCWgPQwi7KlCLQWVwQJSGlFKUaBVNGQFoFkdAlu1HIU8FIXV9lChoBmgJaA9DCBgIAmRozm5AlIaUUpRoFU0+AWgWR0CW7bcPvrnldX2UKGgGaAloD0MISWb1DjeWckCUhpRSlGgVTTABaBZHQJbtwnJDE3t1fZQoaAZoCWgPQwjSjbCoyCxwQJSGlFKUaBVNaAFoFkdAlu4BR/EwWXV9lChoBmgJaA9DCFVMpZ9w0HBAlIaUUpRoFU0eAWgWR0CW7hFYuCf6dX2UKGgGaAloD0MIh6OrdPcvcECUhpRSlGgVTQUBaBZHQJbuiZH/cWV1fZQoaAZoCWgPQwho6Qq2EYxxQJSGlFKUaBVNRAFoFkdAlu6ZhjOLSHV9lChoBmgJaA9DCLggW5bvL3BAlIaUUpRoFU13AWgWR0CW76/JeVs2dX2UKGgGaAloD0MIQPZ698e5R0CUhpRSlGgVS95oFkdAlu/+0b961XV9lChoBmgJaA9DCDohdNAlf29AlIaUUpRoFU1DAWgWR0CW8GFQ2uPndX2UKGgGaAloD0MIZwsIrYdnQUCUhpRSlGgVS+5oFkdAlvCGj0th/nV9lChoBmgJaA9DCLA9syQA/3BAlIaUUpRoFU0HAWgWR0CW8fA5Jbt7dX2UKGgGaAloD0MIKa4q++6icUCUhpRSlGgVTUIBaBZHQJbzOg8KXv91fZQoaAZoCWgPQwgfTfVkPhZxQJSGlFKUaBVNDgFoFkdAlvQcDwH7g3V9lChoBmgJaA9DCFtbeF5qpXJAlIaUUpRoFU1EAWgWR0CW9EKOT7l8dX2UKGgGaAloD0MILsvXZfgcbkCUhpRSlGgVTSABaBZHQJb1LarWAgB1fZQoaAZoCWgPQwggtYmTuzVxQJSGlFKUaBVNEgFoFkdAlvVroOhCdHV9lChoBmgJaA9DCBq/8EoSJ3BAlIaUUpRoFU0pAWgWR0CW9pBNmDlHdX2UKGgGaAloD0MIEMr7OJqgckCUhpRSlGgVTTQBaBZHQJb2+Qjlgc91fZQoaAZoCWgPQwgaahSSTNZvQJSGlFKUaBVNIAFoFkdAlvcyONo8IXV9lChoBmgJaA9DCHQK8rORum9AlIaUUpRoFU05AWgWR0CW914vexfOdX2UKGgGaAloD0MIAKjixu2ncUCUhpRSlGgVTSIBaBZHQJb47JZGKAJ1fZQoaAZoCWgPQwgvo1huaettQJSGlFKUaBVNNgFoFkdAlvk64hEBsHV9lChoBmgJaA9DCFvuzARDynJAlIaUUpRoFU1gAWgWR0CW+UfSx7iRdX2UKGgGaAloD0MIsRcK2E4GckCUhpRSlGgVTSoBaBZHQJb5mZ1FH8V1fZQoaAZoCWgPQwi7RPXWgKNxQJSGlFKUaBVNnQFoFkdAlvp5SeiBXnV9lChoBmgJaA9DCIW1MXZC325AlIaUUpRoFU1VAWgWR0CW+xKMvRJFdX2UKGgGaAloD0MIyhe0kIB5bkCUhpRSlGgVTSkBaBZHQJb7VuZThpB1fZQoaAZoCWgPQwhZGCKnb+tyQJSGlFKUaBVNDwFoFkdAlvvFxS5y2nV9lChoBmgJaA9DCCAot+27/XJAlIaUUpRoFUv6aBZHQJcR1vWH1vl1fZQoaAZoCWgPQwi2oWKc//dxQJSGlFKUaBVNJQFoFkdAlxH9DMNc4nV9lChoBmgJaA9DCLn7HB+tDG1AlIaUUpRoFU0kAWgWR0CXE2U2DQJHdX2UKGgGaAloD0MImyFVFG+FcECUhpRSlGgVTUsBaBZHQJcT5abF0gd1fZQoaAZoCWgPQwizmq4neptwQJSGlFKUaBVL+2gWR0CXFInRsuWbdX2UKGgGaAloD0MIWYl5VtJ0b0CUhpRSlGgVTSoBaBZHQJcWddiUgSx1fZQoaAZoCWgPQwiph2h0R59xQJSGlFKUaBVNQwFoFkdAlxa72lEZznV9lChoBmgJaA9DCAfTMHyE+3FAlIaUUpRoFU1AAWgWR0CXFykzXSSedX2UKGgGaAloD0MIQWX8+8y3cECUhpRSlGgVTRcBaBZHQJcYqHxjJ+51fZQoaAZoCWgPQwiA0lCjEIlvQJSGlFKUaBVNIwFoFkdAlxlf4h2W6nV9lChoBmgJaA9DCMGLvoK0N29AlIaUUpRoFU1PAWgWR0CXGw+so2GZdX2UKGgGaAloD0MIl8gFZ/DvcUCUhpRSlGgVTQIBaBZHQJcbOvV3EAJ1fZQoaAZoCWgPQwg+kpIeBqxvQJSGlFKUaBVNHAFoFkdAlxwQgPmPo3V9lChoBmgJaA9DCIOHad/cWnBAlIaUUpRoFU1QAWgWR0CXHDT8YQ8PdX2UKGgGaAloD0MIkiBcAYWEckCUhpRSlGgVTRIBaBZHQJccsd3jdYZ1fZQoaAZoCWgPQwgiUP2DyBlxQJSGlFKUaBVNUwFoFkdAlx2cjNY8uHV9lChoBmgJaA9DCDXwoxo2ZHJAlIaUUpRoFU0BAWgWR0CXHfmh/RVqdX2UKGgGaAloD0MIKBB2ihWUcECUhpRSlGgVTRABaBZHQJceeUgSvkl1fZQoaAZoCWgPQwhW0opv6MFxQJSGlFKUaBVNKAFoFkdAlyDvGZNO/XV9lChoBmgJaA9DCKVPq+jPBHBAlIaUUpRoFU0uAWgWR0CXIYEwFkhBdX2UKGgGaAloD0MIzCcrhis0cUCUhpRSlGgVTRoBaBZHQJci7BuXNTt1fZQoaAZoCWgPQwj4MlGE1IZyQJSGlFKUaBVNFAFoFkdAlyMJV0cOsnV9lChoBmgJaA9DCNo8DoN5V29AlIaUUpRoFU1QAWgWR0CXIyjJ+2E1dX2UKGgGaAloD0MIl+XrMvyybECUhpRSlGgVTSUBaBZHQJckmi+L3sZ1fZQoaAZoCWgPQwhoIJbNHOdyQJSGlFKUaBVNHgFoFkdAlyYhoqTbFnV9lChoBmgJaA9DCHh7EAKyunJAlIaUUpRoFU18AWgWR0CXJi+l0o0AdX2UKGgGaAloD0MIJVmHo6uPcECUhpRSlGgVTUoBaBZHQJcmhpXZGrl1fZQoaAZoCWgPQwjOVIhH4tNuQJSGlFKUaBVNJwFoFkdAlyc5rk8zRHV9lChoBmgJaA9DCBR4J58edW5AlIaUUpRoFU0KAWgWR0CXJ1ssg+yJdX2UKGgGaAloD0MIjE0rhQBQcECUhpRSlGgVTTUBaBZHQJcnjwlSjxl1fZQoaAZoCWgPQwgCSkONwl9vQJSGlFKUaBVNUAFoFkdAlyfcYqG1yHV9lChoBmgJaA9DCF3hXS7ieXJAlIaUUpRoFU0/AWgWR0CXKE1y/9HddX2UKGgGaAloD0MIstmR6jvsckCUhpRSlGgVTSUBaBZHQJcobNgSey11fZQoaAZoCWgPQwiG5jqNNOxvQJSGlFKUaBVNHAFoFkdAlyiGSdOIqXV9lChoBmgJaA9DCDSFzmssq3FAlIaUUpRoFU0kAWgWR0CXKtDzyz5XdX2UKGgGaAloD0MIQSybOST6ckCUhpRSlGgVTQABaBZHQJcrBC+lCTl1fZQoaAZoCWgPQwjN6EfDqfFyQJSGlFKUaBVNXAFoFkdAlywAZOzpo3V9lChoBmgJaA9DCOLmVDIA6lFAlIaUUpRoFUu9aBZHQJcsF22XsxB1fZQoaAZoCWgPQwielbTimwxwQJSGlFKUaBVNIgFoFkdAlyxI3R5TqHV9lChoBmgJaA9DCM9m1ecqfnBAlIaUUpRoFU0uAWgWR0CXLITlDF6zdX2UKGgGaAloD0MIoOHNGrwhcECUhpRSlGgVTRIBaBZHQJctDgEU0vZ1fZQoaAZoCWgPQwhZxLDDGGtuQJSGlFKUaBVNGwFoFkdAly6W1IAfdXV9lChoBmgJaA9DCIs4nWSr3FJAlIaUUpRoFUv7aBZHQJcul8Sf16F1fZQoaAZoCWgPQwhwsg3cwWtyQJSGlFKUaBVNIAFoFkdAly7JWNm16XV9lChoBmgJaA9DCFHc8Sa/uG9AlIaUUpRoFU0DAWgWR0CXL+s0YTCcdX2UKGgGaAloD0MI1ZKOcrA7b0CUhpRSlGgVTSgBaBZHQJcwGOtGNJh1fZQoaAZoCWgPQwiC/kKPmO5sQJSGlFKUaBVNMAFoFkdAlzCFndweeXV9lChoBmgJaA9DCDfCoiJOf29AlIaUUpRoFU0qAWgWR0CXMKQC0WuYdX2UKGgGaAloD0MINbQB2ACkcECUhpRSlGgVTR0BaBZHQJcw414xDb91fZQoaAZoCWgPQwhbQ6m9SAZwQJSGlFKUaBVNKgFoFkdAlzEnG4qgAnV9lChoBmgJaA9DCP+z5sefvHFAlIaUUpRoFU0FAWgWR0CXMqFfzBhydX2UKGgGaAloD0MIGRu62V9Ic0CUhpRSlGgVTRYBaBZHQJcy8ppeu3d1fZQoaAZoCWgPQwgPgSOBRnRxQJSGlFKUaBVNFwFoFkdAlzQy5Zr57HVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27f26711fd93e2f40b370dcb9d38e03bdaf36c3cfbce47bbbb9f626b91c32cff
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee806a23a9a39ee6b0850d7c95c700fe4a1fb7f904bacb9eca7380d229cdf672
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (233 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.85302779491417, "std_reward": 21.14836056502705, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T05:56:36.263711"}